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We recently showed that the spectrum of light emitted by a source depends not only on the spectrum of the source distribution
but also on the degree of spectral coherence of the source fluctuations. In this note we show that with a degree of spectral coherence
of certain kind, specified by two parameters, the spectrum of the emitted light will be displaced relative to the source spectrum.
The displacement will be either toward the lower or toward the higher frequencies, depending on the choice of the parameters.
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REDSHIFTS AND BLUESHIFITS OF SPECTRAL LINES
CAUSED BY SOURCE CORRELATIONS*

Emil WOLF'
Department of Physics and Astronomy. University of Rochester. Rochester, NY 14627. USA

Received 24 November 1986

We recently showed that the spectrum of light emitted by a source depends not only on the spectrum of the source distribution
but also on the degree of spectral coherence of the source fluctuations. In this note we show that with a degree of spectral coherence
of certain kind. specified by two parameters, the spectrum of the emitted light will be displaced relative to the source spectrum.
The displacement will be either toward the lower or toward the higher frequencies, depending on the choice of the parameters.

1. Introduction line will be redshifted with respect to the spectral line
of the source distribution. The amount of the red-

It has been known for some time that the spectrum shift depends on the spectral correlation length of the
of light generally changes on propagation, even in free source. This result has important implications for
space f 1.2 ]. Such changes are basically due to corre- astrophysics, some of which were briefly mentioned
lation properties of the source. Recently we derived in ref. [ 5 1.
a condition for the normalized spectrum of light gen- In the present note we again consider a source
erated by a planar, secondary, quasi-homogeneous whose spectrum consists of a single line with a gaus-
source to be the same throughout the far zone and in sian profile but we assume somewhat different cor-
the source plane [ 31. We referred to this condition, relation properties of the source. More specifically
which is a requirement on the functional form of its we choose a degree of spectral coherence of the source
degree of spectral coherence, as the scaling law and distribution which depends on two parameters rather
we noted that all quasi-homogeneous lambertian than on a single parameter as we have done previ-
sources satisfy this law. We have also shown that when ously. The spectrum of the emitted light is again
the scaling law is not satisfied the spectrum of the found to be a line with gaussian profile, but this line
emitted light will, in general, no longer be invariant may be redshifted or blueshifted relative to the spec-
on propagation. These theoretical predictions have tral line of the source distribution, depending on the
been recently verified by experiments [4]. choice of the parameters.

In another recent paper [5] we considered radia-
tion from three-dimensional, quasi-homogeneous
sources and we showed that if the source spectrum 2. The spectrum of light produced by a three-
consists of a line with a gaussian profile and if the dimensional quasi-homogeneous source
degree of spectral coherence of the source is appro- Let us consider a fluctuating source-distribution
priately chosen, the spectrum of the emitted light will Let us con g a fintu ain s o lu in
also consist of a line with gaussian profile, but this Q(r, s) occupying a finite domain of volume D in

.. free space and let l'(r, t) denote the field generated

, '" Research supported b) the National Science Foundation under by the source. Here r denotes the position vector of a

(;rant PHY-8314626 and the Air Force Geophysics Labora- typical point and t the time. Both ['(r, t) and Q( r. 1)
tory under AFOSR rask 2310G.i1. are taken to be analytic signals [6]. They are related
Also at the Institute of(ptks, I tIniersity of Rochester. by the inhomogeneous wave equation

12 0 030-4018/87/$03.50 (0 Elsevier Science Publishers B.V.
The U.S. Government Is authorized to reproduce and sell this report. (North-Holland Physics Publishing Division)
Permission for further reproduction by others must be obtained from
the copyright owner.
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V2 V(r, t) -c-2 (a210t2 ) V(r, t)= -4n Q(r, ) . is the six-dimensional Fourier transform of WQ.

(2.1) We will restrict our attention to quasi-homogene-
ous sources. For such sources one has, to a good

We will assume that the statistical ensembles that approximation,
characterize the source fluctuations are stationary. W(r, r2 , ()

Let WQ(ri, rz, to) and W, (ri. r2, wv) be the cross- r

spectral densities of the source distribution and of =SQ[(r +r2)/2, co]1,,Q(r2 -r, (a) (2.7)
the field distribution respectively. They may be rep- whr
resented in the form [7] where

WQ(r,,r 2,o)=(U*(rio) UQ(r 2, (o) > (2.2a) SQ(r'to)-WQ(r'r'to)
= < .'<(r, (o) UQ(r, (o) > (2.8)',

W ,.(r,, 2. co)= K U?(r, co) U(r 2, ()> , (2.2b) is the source spectrum and

where {UQ(r, to)) and {U(r, c)} are ensembles of
suitably chosen realizations, angular brackets denote jAQ( r2 - r,, cv) WQ( r1 , r2, cv)
averages taken over these ensembles and the asterisk x [SQ(r,, co)] -12 [SQ(r2. o)] - ,2 (2.9)
denotes the complex conjugate. As consequence of is the degree of spec.ija! oherence of the source dis-
the wave equation (2.1) the two cross-spectral dens- tribution. Moreover. for each effective frequency wv
ities may be shown to be related by the equation contained in the source spectrum, SQ(r, ov) varies
[ref. [71, eq. (3.10); ref. (8a], eq. (2.11) much more slowly with r than p(r', ov) varies with

(V2 +k 2 ) (V , +k2 ) W,(r1, rr2 cv) r'. With sources of this class eq. (2.5) takes the form

= (4n) 2 W(r,, r 2 ,cv), (2.3) [ref. [8b],eq. (3.11)]

where V and V are the laplacian operators acting J,(u) = (2r)69Q(0, o)fiQ(ku, w), (2.10)

with respect to the coordinates of the points r, and r2 where the tilde now denotes three-dimensional Four-
respecti vely and ier transforms.

Let us next assume that the source spectrum is the
k = covc (2.4) same at each source point. We will then write SQ(cv)

is the wave number associated with the frequency o, in place of SQ(r,ct). In this case 9Q(0, v),
c being the speed of light in vacuo. = DSQ(co)/(2n) and the formula (2.10) becomes (D

Using eq. (2.3) one can show that the radiant again denoting the source volume)
intensity J,(n) generated by the source, i.e. the rate J,() = (2n)'DS(o)fi(ku, o). (2.11)

at which energy is radiated at frequency o per unit 2
solid angle around a direction specified by a unit Now the radiant intensity J,,(u) is trivially related
vector m is given by [ref. [8a], eq. (3.9)] to the spectrum S$ "(Ru, co) -= Il (Ru, Ru. to) of
J,(u) =(2yr) 6  '( - kukuw) , (2.5) the far field by the formula [9]

S). '(Ru, Ru,co)-J,,,(u)/R2  as kR-c,, with the
where unit vector u fixed. Hence we obtain at once from eq. S

Ka (2.11 ) the following expression for the spectrum ofW(k," A cv) 2. (2 )t) Q t4i(r ,2. cv) the emitted light in the far zone:
D D

xexp[ -i(K, "r, +K2,'r 2 )] d'r, d'r 2  (2.6) S[ 1 (u" t )=(2) 3 (DIR 2) SQ(cv) /u(ku. cv)

The definition of the cross-spectral densities employed in refs. (2.12)
[71 and 181 differ by complex conjugation. Throughout this This formula shows that the spectrum S) "' (u, (a) of
note we employ those of ref. [ 7 ]; hence some of the formulas
we now use le.g. eq. (2.5) below] differ trivially from the cot- the emitted light in the far zone depends, in general.
responding formulas of refs. 181. not only on the source spectrum SQ(o) but also on

13
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the degree of spectral coherence of the source distri- ,'W
bution. It seems worthwhile to note that the dimen- '.0

sions of SV) and of SQ are different. Since j1Q is the
three-dimensional Fourier transform of uQ, [A ] = L 0.8

(brackets denoting dimensions and L denotes
length). Hence eq. (2.12) implies that 0.6

IS' ."] = [S0 IL
4, in agreement with eq. (2.3).

0.4-

3. A class of source correlations that generate 0.2

lineshifts 0 0 2.5 3.0

In ref. [5] we considered quasi-homogeneous ( 1

sources whose spectrum was a line of gaussian profile. ,

S(to) =A exp[ - (w -(oi)2/264] , ),

(3.1) Fig. I. The behaviour of the correlation coefficient ju(r') = [(sin
Kr')/K,r'l exp(-r'/2C ), with K, =1.07x 10 cm '. ,= 1.5cm

and whose degree of spectral coherence was also (associated with curve (d) in fig. 21.
gaussian viz.,

,uQ(r', o) =exp[ - r"/2a2 (to)] , (3.2)
It can be shown by a long but straightforward cal-

where r' = lr' . The three-dimensional Fourier culation (which we omit because of limitation of
transform of MQ is then given by space) that if
P,(K, to) = 1o( o)/, 2n ] exp[ - JK 2o o) ] K , C .-s1 (3.5)

(3.3) the degree of spectral coherence, whose Fourier

(K= KI). In particular we showed that if a(w) is transform is given by eq. (3.4), is
constant (C say) such a source will emit light whose ju(r')=[(sinKr')/K,r'] exp(S-r /2 )  (3.6)
spectrum in the far zone is redshifted with respect to
the source spectrum, the amount of the shift depend- and that the constant B in eq. (3.4) is given in terms
ing on the effective source correlation length C. of the two other parameters by the formula

The degrees of spectral coherence of the form (3.2), B- /2(2n) ' /2K . (3.7)
with 7o(w)= (constant) form a one-parameter '
family. In this note we will consider quasi-homoge- From now on we will only consider situations for S
neous sources whose degrees of coherence are of a which the constraint (3.5) holds. Eq. (3.6) then
somewhat more general form. Specifically we assume shows that the degree of spectral coherence has the
that for these sources form of the sinc function (sin K r')/K r',modulated

by the gaussian function exp( - r' /22 -). The behav-
pr(K) =Bexp[ - [(K-K, )27,2] . (3.4) iour of such a two-parameter correlation coefficient
where B, K, and are positive constants. We have is shown in fig. I.
written AQ(K) rather than P,( K. (u) on the left-hand It follows on substituting from eqs. (3.1 ) and (3.4)
side of eq. (3.4), because t, is now independent of into eq. (2.12) that the spectrum of the light in the
(o. Only two of the three constants in the expression far zone, generated by such a source, is given by
(3.4) are independent, because the Fourier trans- S ) )=(2n)'(D/R2).4Bexp - (o -to,) 2 /2612A
form .u(r' ) of j"Q(K) satisfies the requirement that
pv(O) = I. which is a necessary condition for M 0,r') xexp[ - (o-o, /2 5,
to be a correlation coefficient. (3.8)

14
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where w = kc as before and k( = w/c associated with the source spectrum SQ (o),
the spectrum S1- (w) of the emitted light is red-

wo, =Kc, 6, = c/. (3.9) shifted with respect to Sc,(w); and that ifKj is greater
than k, it is blueshifted with respect to it. We also see

We have written S?" (w) rather than SV'I(u, to) from eq. (3.14) that 1/6, > 1162 i.e. that &I <,0,.
on the left-hand side of eq. (3.8) since, because of Hence in either case the spectral line of the emitted
the assumed isotropy of the source, St '" is now light is narrower than the spectral line of the source
independent of u. In terms of the parameters co1 and distribution.
6, the factor B, given by eq. (3.7), becomes

B= cl/2(2n) 1 2o461 . (3.10)
4. Examples

Let us now consider the expression (3.8) more
closely. For this purpose it is convenient to set To illustrate the preceding analysis we consider a

a,) = 11260, aI l/2612 . (3.11) few examples. For simplicity we will choose

One then finds after a straightforward calculation that 6, = 6, . (4.1)

eq. (3.8) may be expressed in the form Then, according to eq. (3.11), a,=ao and the

S'jV'(w)=ACexp[- ((o-too)/ 2I2,] , (3.12) expression (3.12) becomes

where Sy,) (W) =AC exp[ - (Wo&))2 /6 (] , (4.2)

o,, = (ot, +a, (,)/(ao +a ) , (3.13) where

6w=i(o 0 +to') , (4.3)

I/ =-')(a, + a, )= (54) + ( 1161), (3.14)
an= (21) 3(DB/R)exp[ - ((a, -O,) 2 /462]. (4.4)and

C= (2,r) 1(DB/R 2 )
We see that the spectral line of the emitted light is

x exp{ - [a,^/(a, + a, )](o -oo) • now centered on the average value 61 of the frequen-

cies o, and (0 1.
(3.15) Let us consider the normalized spectrum

The formula (3.12) shows that the spectrum of the
emitted light in the far zone is also a line with gaus- sP. (w) = S.'(W)/JS'(o) do (4.5)
sian profile, but it is not centered on the frequency 0

, of the source spectrum [cf. eq. (3.1 )1 but rather of the emitted light. On substituting from eq. (4.2)
on the frequency wo,, given by eq. (3.13). Since i nto eq. (4.5) and on using eq. (4.3) we obtain the
according to eqs. (3.11 ) a, and a, are positive con- following expression for s ():
stants one can readily deduce from the expression
(3.13) that st. '((0)=(/ (116\)

( Vo < W o w hen (, < 0 x exp - [(o - ( tO + o , )l-/, . (4.6 )

and that In fig. 2 curves are plotted showing the normalized

No I) >Noo when v), >o, . source spectrum

Since according to eq. (3.9) (o -Kc, this result s5((O) (l/(&\'2n) exp[ - ((o-(o,):/26 ,]
implies that if the parameter K, of the degree of spec. (4.7)
tral coherence (3.6) is smaller than the wavenumber

15
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ST'.)chosen so that 65 =c/C is equal to 60. It is seen that
14 ~with increasing values of the difference I1too- co I the

(4 a) (b) (C Cd) shift of the emitted spectral line also increases. This,
1.2 of course, is to be expected since when 6, =6 0, the

1 .0 s, shift is given by ICo-W 1 Io =Iwo -o)I.

10o.6

Acknowledgemients
70.6-

204- 1 am obliged to Prof .S Agarwal and toMr. K.
0.2 Kim for helpful discussions and to Mr. A. Gamliel

for carrying out the computations relating to figs. I
0 and 2.

3.19695 3,19700 3.19705 3.19710 3.19715

(un~ts: 105 sec")

*Fig. 2. Redshifts and blueshifts of spectral lines caused by source Rfrne
correlations. The normalized spectrum su(cw) of' the source dis- Rfrne

* tribution is a line of gaussian profile [given by eq. (4.7)], with

oa,=3.J97049x 10" s ' (sodium line of wavelength I1I1(a) L. Mandel. J. Opt. Soc. Am. 51 (1961) 1342;
A.=5895.924 A) and rms width 6 =2x 10'" s '. Curves (b) L. Mandel and E. Wolf, J. Opt. Soc. Am. 66 (1976) 529.
(a) - (d) show the normalized spectra J.. the emitted light [lines 121 F. Gori and R. Grella, Optics Comm. 49 (1984) 173.
with gaussian profiles given by eq. (4.6)], generated by the source [3] E. Wolf, Phys. Rev. Lett. 56 (1986) 1370.
distribution. cach with 6,=6, (C651= 1.5 cm) and with [4) G.M. Morris and D. Faklis, Optics Comm. 62 (1987) 5.
wo,=wa,,- l.4x 10'' s ' (a), w,=w,,-0.7x 10' s I (b), [51 E. Wolf, Nature, 326 (1987) 363.
w,= (,,+ 0.7 x 10" s ' (c) and (oIweo +l.4 x 10'' s -' (d). (61 M. Born and E. Wolf, Principles of optics (Pergamon Press.

Oxford and New York, 6th ed., 1980), sec. 10.2.
*taken to be one of the sodium lines, as well as a num- 171 E. Wolf, J. Opt. Soc. Am. A 3 (1986) 76. ecis. (2.10) and

ber of emitted lines for different values of the param- (3.11).
4 [81 W.H. Caner and E. Wolf, (a) Optica Acta 28 (1981) 227;

eter to, = Kc, of the degree of spectral coherence of (b) Optica Acta 28 (1981) 245.
the source, the other parameter, ~,is kept fixed and 191 E. Wolf,.J. Opt. Soc. Am. 68 (1978) 1597, eq. (B16).
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RADIATION EFFICIENCY OF PLANAR GAUSSIAN SCHELL-MODEL SOURCES*

Avshalom GAMLIEL
The Institute of Optics, Universitv of Rochester Rochester, NY 14627, USA

Received 2 September 1986

A general expression is derived for the ratio of the radiated power and the source-integrated intensity for any planar gaussian
Schell-model source. The behavior of this quantity, known as the radiation efficiency of the source, is displayed graphically as a
function of the rms width of the intensity profile and the spatial coherence length of the light distribution across the source. Some

limiting cases are discussed and it is shown that a gaussian-correlated quasi-homogeneous source may have higher radiation
efficiency than a fully coherent Schell-model source with a gaussian intensity profile (e.g. a single mode laser).

1. Introduction

In the last few years there has been considerable
interest in radiation produced by partially coherent
sources. In particular, the radiation efficiency of
sources of different states of coherence have been
investigated. The radiation efficiency of a source is
defined as the ratio of the total outgoing flux to the
source-integrated intensity. The radiation efficiency Z

of planar quasi-homogeneous sources was studied by
Carter and Wolf [ 1,2 ]. More recently the radiation Fig. I. Illustration of the notation. P represents a field point in

efficiency of three-dimensional gaussian Schell-model
sources was calculated, and was compared with the pletely coherent source with a gaussian intensity pro-
radiation efficiency of a corresponding coherent file (e.g. a single mode laser).
source (3 ].

In the present paper we extend the analysis of
Carter and Wolf to the important class of planar
gaussian Schell-model sources. We derive an explicit 2. The radiation efficiency of a planar gaussian
expression for the radiation efficiency of sources of Schell-model source
this class and present diagrams which show its
dependence on the rms widths of the intensity pro- onsder a pla n hel -mod rce
file and its degree of coherence. We also examine occupying a domain D in the plane z=O and radiat-homoeneus ourescomletey chernt oures, ing into the half-space z> 0 (see fig. 1 ). Such a sourcehomogeneous sources, completely coherent sources,

and quasi-homogeneous sources as limiting cases of is characterized by a cross spectral density function

gaussian Schell-model sources. Finally we derive of the form 14]

conditions under which a planar gaussian-correlated W(r, , r2 , (0)

Schell-model source is more efficient than a corn-
= [I(r, , c) l(r2 , cv)] "2 g(r, -r2, cv) , (I)

Research supported by the Air Force Geophysics Laboratory

underAFOSR Task 23iOGI and by the Army Research Office. where I(r, c) is the intensity profile and g(r 1-r 2,

0 030-401/86/$03.50 © Elsevier Science Publishers B.V. 333
(North-Holland Physics Publishing Division)
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to) is the complex degree of spatial coherence, both Here 1o, a, and a are positive quantities depending
taken at frequency w. The symbols r, and r2 are posi- only on the frequency &) (dependence not dis-
tion vectors of typical points in the source region D. played). Such sources are known as gaussian Schell-

It is known that the radiant intensity produced by model sources.
a secondary planar source in the direction specified On substituting from eqs. (6) into eq. (I ) and tak-
by a unit vector s is given by [5 ] ing the four-dimensional spatial Fourier transform

(2) one can show after a lengthy calculation that [cf. refs.
J(s)=(2nk)cos 2 ,. (2 6and 7]

Here k=co/c (c= speed of light in vacuum) is the -

wave number associated with frequency o, 0 is the W( ki ks, 1 w)

angle between the s direction and the normal to the to k'sin2 O
source plane, and 2 - 2-exp -i2) (7)

4(2n)2 a2 (a-' 2  2(a +21P

ff' 2f.,2, W) = (2n) -4 fJ W(r,, r2 , (0) where

-' =1/(4ar). ,fl - 11(2ar2 ) (8)

xexp[ -i(fi r +f2 r-)] d2r, d2 r2  (3) Next if we substitute !rom eq. (7) into eq. (2) we
obtain the following expression for the radiant inten-is the four-dimensional spatial Fourier transform of sity generated by a source of the type we are

the cross-spectral density of the light distribution in considering:

the source plane, with f, and f2 representing two- .e

dimensional spatial-frequency vectors. J. (s) = k -l, cosO
The total flux emitted by the source into the half- 4a-( a- + 2112) o

space z> 0 is given by the expression
k 2sin 00 ,, f J,,(s) dW, (4) xexp( 2(ot-2fi2)" (9)

(2f!)

where the symbol (2n) under the integral sign idi- It follows on substituting this expression into eq. (4),
that the total flux at frequency to radiated by a planar

cates that the integration is taken over the solid angle
subtended by a hemisphere in the half-space z>0, gaussian Schell-model source into the half-space z>0

centered at the origin, is given by

We define the radiation efficiency of a source [cf. ow k lo Cos
ref. 2. eq. (3.11 )] by the formula 4a_( 2 + 212) f

f', = 0',, f 1(r, &))d"r. (5) k k2 ,1

×exp 2(c-W 2a- ( i -Cos' O) d9. (10)

The integration in the denominator of eq. (5) is taken
over the source domain D. We show in the Appendix After some algebraic manipulation this expression
that t,,, < I for any planar source. can be reduced to

We will now consider planar Schell-model sources ex( -2)
for which both the intensity distribution and the 0,o =21sr (1 1 r )exp(t2)dt). (Il)
degree of spatial coherence are gaussian, i.e. they have 0 /
the form where

where

i(r. w) =l,)exp(-r12a) , (6a) 1=[I/2(ka,) 2 +2/(ky,)2 ]  (12)
and

The denominator in eq. (5) with I(r, o) given by eq.
g(r - r2,, (o) =expf - (r, -r2 )-/2ar] . (6b) (6a) can also be readily evaluated and we find that
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*00$

I 0.6

)0 ) B 100.

0 2 4 6 8 10
kcy

9

f I(r, a) d 2rz=2nloc. (13) 0.99-
/ k , = 10

On substituting from eqs. (I I ) and (13) into eq. (5)
* we finally obtain the following expression for the 0.8 .

* radiation efficiency of a planar gaussian Schell-model 0.6$ . . .-------------------- -
.- source: 06

,= I -D( )I, (14) 0.4

where 0.27

0.2 
kg=

D( )=exp(- 2 ) f exp(t2)dt (I) (b)

0 0 2 4 6 8 10

is the Dawson integral 1 8 Fig. 3. Radiation efficiency , as a function of ko, for selected

Fig. 2 shows a three-dimensional plot of the radia- values of ka, (a) and as a function of ka, for selected values of
tion efficiency (,, as a function of ka, and ka, calcu- ka, (b)
lated from eqs. (14) and (12). Fig. 3(a) shows the
behavior of the radiation efficiency as a function of
kar and fig. 3(b) shows its behavior as a function of
ka, for some selected values of the other parameter. '2

0\6
3. Physical interpretation

As can be seen from eq. (14) the radiation effi- ke0t

ciency t,,, depends on the rms widths of the intensity
profile and of the degree of spatial coherence only 0

through the parameter defined by eq. (12). A con-
0 6

sequence of this fact is an equivalence theorem for 0_4
the radiation efficiency: there exist an infinite num- 0
ber of planar gaussian Schell-model sources of differ- kg 8

ent rms intensity width cr, and different spectral Fig. 4. Contours of equal radiation efficiency as a function of ka,
coherence lengths a. which have the same radiation and ka,.
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W(ri, r2,o)=loexp[-(r - r2)2 /2a 2 ] (17)

Since W(r, r2, w) now depends on r , and r2 only
0.6 through the difference ri - r2, the source is homoge-

neous. It follows from eq. (12) that as krr,oo.
0.6 --- *ka,1/1/ and hence the expression (14) for the
0radiation efficiency now becomes

o04 D(kog/f/2) 3
= krl /2 (18)

a.2
\- Furthermore, on inspecting eq. (18) and using the

fact that the function D(4)/ monotonically decreases0 0.5 1 1.5 2 25 from unity to zero as increases from zero to infinity

(see fig. 5) we see that for radiation from a homoge-
Fig. 5. Graphical representation of D(.)I/. where D(4) is the neous gaussian Schell-model source, e,- increases
Dawson integral (15). monotonically with increasing ka, and asymptoti-

cally approaches the %alo,- unity as kar--,oo. This
limiting case corresponds to the situation where the

efficiency (,,. For a given value of (,,, a class ofequiv- field generated by the source coincides with a wave-
alent sources is represented by a single curve in fig. front of a plane-wave field that propagates in the

4. positive z-direction. -We shall now consider a number of limiting cases p.-

that are of special interest. 3.3. The quasi-homogeneous limit (a,> aj)

3. 1. The coherent limit (kao--oo) When kate, ka, a gaussian Schell-model source

When the source of the class that we are consider- reduces to a Saussian correlated quasi-homogeneous
source with a gaussian intensity profile. The radia-ing is completely coherent, ko--.o and eq. (12) tion efficiency of such sources was shown by Carter

implies that -. Irkai. The expression (14) for the and Wolf 1c to be given by

radiation efficiency then becomes

f,, I I- D(,/ka,)/12ka . (16) , (kag,/ (19)

Since the second term on the right of eq. (16) kag/T- 2

approaches zero as ka--,oo (see fig. 5) we see that It is clear that our expression (14), together with eq.
the radiation efficiency of a coherent source then (12), indeed reduce to eq. (19) in this limiting case.
approaches the value unity. The formula (16) applies We may also consider the limiting case of a corn-
to certain types of lasers operating in their lowest- pletely coherent quasi-homogeneous source by let-
order mode. ting kag-4 oo, ka--, oo with kalka,= const. , I. Since

D( )I-.O as --oo it follows from eq. (19) that in
3.2. A homogeneous Schell-model source (ka,-.oo) this limit

e,,, l •. (20) .
Another interesting limiting case is obtained by (20)

letting ka,-.oo (with k being fixed), and kag having Hence the radiation efficiency of a coherent quasi-
an arbitrary but fixed value. Eq. (6a) reduces to J(r, homogeneous source is unity.
o) = I, and if we also make use of eq. (6b) the Finally we deduce from eqs. (16) and (19), if we

expression (I) for the spectral density of the source recall once again that D()/ decreases monotoni-
becomes cally with increasing , that when
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X l(r, o)d'rJ 
(M)

the radiation efficiency (at frequency w) of a gauss-
ian correlated quasi-homogeneous source will be if we next make use of the relation cos2O
greater than that of a completely coherent Schell- dQ2=(l -s -s)" 2dsds neq. (AM) and recall that
model with gaussian intensity profile. As we have the intensity (r, w) = W(r, r, w), we find that
mentioned above, certain types of lasers operating in t

their lowest order mode correspond to a coherent ) 2

Schell-model source with a gaussian intensity pro- Ji s (2nk) 2  W(ks ks w) ds, dsY
file. It is therefore clear from eq. (21) that a gauss- +S'l

ian-correlated quasi-homogeneous source may have
higher radiation efficiency than a coherent laser × fW(r,r, &) d'r) (AS)
source emitting radiation of a gaussian intensity
profile. In view of the inequality (A3) we may replace the

integration over the unit circle in the numerator of
eq. (AS) by integration over the whole s,, s-plane.

Appendix After doing so we substitute for W(ks, -ks,, (a)
from eq. (3) and interchange the orders of integra-

Proof that ,.5 - I for planar Schell-model sources tions. We then obtain the inequality

It was shown in ref. [ I I that for quasi-homogene- ! (
ous sources f< I. We will now show that this ,(r, r, o) 6(r, -r,) dr 1 dr 2
inequality holds, in fact, for all planar sources.

We start by showing that J?(f -f, to) >0 for all real
two-dimensional vectors 1(0 IjA <oo). The cross (r,r,w)drI
spectral density W(r, r,, w) is known to be non-neg- XfW r )
ative definite [9j i.e. where 6 is the Dirac delta function. On carrying out

ff 9(rr 2 ,o)f(r,)f"(r2) d2r, d'r 2 0 (A the trivial integration with respect to r2, we finally
f obtain the inequality

with any arbitrary function f(r) for which the double i,,, s I, (A7)
integral converges. Let us choose f(r) = exp( - if r).
The inequality (AI) then gives valid for all planar sources.

f f W(r" r2, (0)
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Mueller matrices and depolarization criteria

R. SIMION

The Institute (of Mathematical Sciences, Madras 00) 113, India

(Rereived /0 .Septonl'r 1 9,%)

Abstract. TFhe question of' \khether a g~iven Mueliler matrix represenlts a1
deterministic or a tit itideterttlinistic system is analysed by~ meanis ol ;i matrix
Coii ion.1 TE~Ihe pE 1551 hty t\ Erepla i ng this miatrix co nditio n by a scalar conl dit ion
is examined. It is shoE% iI that this is permissible conly for those cases \\here at
I krtioit an mlatrix const rocted f'ro the Mlueller matrix is positive semidefinite.

1. Introduction
Several methods have been used in the description of the polarization state of a

\\aveield. While the Jones method I I1 and the I'oincar sphere method 121 are useful
for thle description of fully' polarized states, the coherency matrix method 131 and the
Mueller Stokes method [4, 51 can handle bo0th part ially and full\ polarized light. It
,should he noted that all these methods assumne the radiation field under consideration
to be an ensemle ofiplane waves all having the same wave-vector. It is only relatively
recently that a systematic procedure for handling polarization In a beam field has
been developed [6 1. 1In the following we assume, however, the radiation field is of the
former type.

T[he coherency matrix and the Stokes vector are equivalent, and carry exactly the
same amount of information. I lowever, when) the passage (of the beam through ant
optical system is encountered, the situation becomes quite different: the usual
transform ation law% of the coherency matrix via the Jones matrix of the optical
elenient corresponds to deterministic (non-depolarizing) systems; while the trans-
formation of the Stoke-s vectoir through the Mueller matrix corresponds to more
gIeneral systems including nion-deterministic (depolarizing) system-,. IIn thle deter-
ministic ease the NI uclier matrix can he derived fronm thle Jones matrtx of the system.

A o-eetlnsi stemi i the other hand, has a well-defined M ueller matrix-,5
bill there does not exist -, JoE nes matrix from w\hich it cal lhe derived. Ihis is toE be
expected, for the Jones m~atrices fo~rm aI seve-n-paramieter family (thle absolute phase
EOf the Jones matri\ Shotuld be suppressed in an coitparsoEn w\ith thle NI (ellertimatrix
since it does not aflect thle t ransformat ion of' tile coherency tmatrix, this t ransfo"rml-
at icn being qutadratic in thle JoEnes matrix), whereas thle Mller matrices form a
51steeii-pirarile('er latitvil\ .

IIIn I0\~ Elfthis sitiatiomn the folb(Ming(questioit) is41 E111I jtilrac-tica l interest. I It)\'

c~ii E~cdetrt~ite be hr i epermet al\niasti rtd Mlir nt rt correspo(ndls

tEE a deteriniistie- Eor ;iItEi-cct'tttcs stefll iThis questiton %%as first posed and
examiine'd by Ilarakal 171 Aeninpletv answer to1 this quLestion ti ich form Eof' a

ncessary and sullicienti matrix contditio %\11~as sub~sequently presented h\ thle pit-seii
author 18). (;1 ; i nd Bvertiablel l1 have recently mlade the interesting claimi that this
nmatrtx ciiditi(Et can bev replaced I)\ a scalar E.(tditiont. InI the present paper \%v
anlal~ sc this (latil aund shiEv, that it Is. tnot \alid fEor all situtioEns.
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570 RI. Simon

Iii § 2 we hrictly recall the relationship between the descriptions in terms of the
coherency matrix and in terms of the Stokes vector leading to the matrix condition
Xgj. Ml'en we analyse the wcadar condition of Gil and Bernaheu and show that it is not

equivalent to the matrix condition in general. In fact we show that it is only in those
situations "'here a particular I lertnitian matrix constructed from the N\lueller miatrix
is positive se-midefinite that the scalar condition is equivalent to the matrix condition.
In § 3 we present a simple example which illustrates these results. Section 4 contains
some conc luding remarks.

2. Jones matrix, Mueller matrix and the depolarization criterion
Tlhe coherency matrix (p describing a polarization state is a 2 x 2 complex

Hermitian positive semidehinite matrix:

(P (P22 )

Its transformation by at determinisici (non-imnage-formling) optical systemn \%ith
J ones matrix J is given b\-

i: p.-*('=JpI'.(2)

For the purpose of comparison with the NMueller Stokes formalistm it is com ncilt
to associate with every coherency matrix, (p, a fouir-elemen t column, (D, in the-
tollowing one-to-one manner:

11)213

T'he Stokes vector S describing the same state is related to (1 through a1 simple
numerical miatrix .4. We have

S A (1),(4)

'lhere

15 4) (

It cani be cisilk che-cked thai I1 is uinitary. e xctpi tir a t)imit ipIIL.Ii\ vea titr, miid ve

Si nce ..1 i s unI-,,Iingu Iar, i tollohms f rom (4) i hat I ht Sit 11, (' X u t')I it I th lr)I(.I c-11
)flatrix are in) one-to-onet ('01iespoiideICe1C, And litcne wit.1ii dcit-leil .1nto1rtil 11(i
;kbout thet si itc of (lte field. Since (P is Ilecrinilit an 1S Tu.al, itill t ilt posit 1%
semlidetinit ent-ss of (1 inipl ics

16



.1 liUr #Ptatrjccs and depohirizatin cri/criai 571

1I. der the le ;iton of' an optical element, the change tin the polarization state is

dt"( VIbk-l till ll,01it lithearl t ransl'ormat ion .11 onlS

.11,:, *
1 1

,j 11.2112

Tlhc 4 x -4 real o tat ri \ .11 is called the Mliler maitrix of, thle optical Celent. IIn thle

special case where thle optical element under consideration Is deterministic it canl be

described eitheir throuigh a. Jones miatrix .1 or a X '\uclekr matrix 11, and thle t\\o are

re-late'] tlirotithd I It., 8

w~here * Indicates complex conjugation and ® denotes the Kronecker matrix
product.

In 1X] we defined a matrix N through the elements of .1l. Tlhis is shown as
equation (101) on the following page. Tlhis relationship between Al and N is clearly
one-to-one. The matrix NIs ntanitfestly I lermitian. It% trace is Simply related to Ml:

ill tile follow~ing we w~ill need to use another relationship between .11 and N\:

Tlr (N') Tlr(0AIA I'), (12)

where AP1 denotes thle matrix transpose of Al. The relationship ( 12) can easily he

cer ifi ed f'romttt heu explicitI or m ofI N gi ve n I 0) 1by no0t inIIg I tat t ho: le ft -hantItd s idoe o f
(12 ) i Sh 1.101, ,I t' te m o IIt ttu ts squaI tr c of IaI t hc 101 elemIenIc It s tof N1.\ %w I r t IIt -oI' thev

I lernlitian propvrt\ o4 .V \\ ide tile right-hand side is the stirn of thle squares of' tile
* elements ol' the real miat ri .11.

fIn the spirit of I 3) \\ e ~rite the 2 x 2 complex Jones maltri\ .1 in (2) ats a 'tur-

En toltanh \vctorIt 1

Iventhoigh %C ist tht S;~nCSVIlllhol .1 l'o theII 2 2 iliatrix ats fotr thle 1*ttr-elinent

cloti t? cotnflilion is ct-tetet ttt arise. Foir tltv,;osto ytemls M hitse \liteller

niatrix Is re-late-d to .1 throutivi (9) the mnatri\ N is rlatto tol .1 in at simple- \%it 181I:

.\*,,, J.. .$ f.12, 3, (14)

V 17
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.'liteli'r malrices and depolarizatiu,, enrioi 573

Now% assume that thle optical clemntet is deterministic. Thien it has a Jonles mlatrix
J, mid the .\* nat rix of the system is giveni bx ( 14). Sqaigthe matrix equation ( 14)

That is, for determnijist it systemls

('oin\'rsel\ , assume that the optical element satisfies ( If6). Tlhat is, from thle \lueller
tmItrix of the given optical element, we construct the A' matrix according to thet
prescriptioin (l1t). and this matrix sat isfies (10) T~V'Ihen ( 16) implies that 'Ir (f ' N
is af projection iopurati-t and hence NV cany be \% itivten in the form ( 14) for somei J. In
othet- wo~rds, the s~ste1 c-an be described through aI jones matrix and hence is
deterIIiiiinii. Th us we hat\ tile f d 0 ing\tw theo rem 1 X1: Vi cesr dsuiit
eun it ion ffur apt Optic-al sys/em nit/i a gil-en M~ueller mtatrix it) he dete'rmintistie is tha~t its
Nmatrixi forpned lirouig' ( /0) shul satis fy- tihe ,natri, cwiti ( 16). P'

I lavmig estahl isfied ( 10) we are readyv no%\ to atlalk SC thet reVsults 0f) ther autho11rs
lin thet light of this result. IThe matri eul dit ion of' Iarakat wvill not he analvsed he-re
(scve 1) Assunie that %e ca lit a i doot rminist it s\ stem,. Thlen ( .)is saitist jet. TFaking i
tite trace (it* ( 161 and uisfrwng I t) tn obtain Itir such S~stems

anld hence fronm ( 12),

'llh Is ( 1X) is at necessary condit Ion fi ir at s\ steru to he deterrn mist ic. I lenc t he resu It
(if Fr\ and Katas uan I I I is consistent with out mat rix condition). ( ;i1 and llernabeu .5

1MVLId inled thal~t it is al SO thle sufictice conditilon. '' 1,)See it' thi its ISo %we hlae too

Tr(V Tr ( N)1
2  

19)P 5

is cqim aletit to ( 10). ('leanl\, there kre t\\o cae to' he dIISttnlgiSlcd:

*1\ V: N is Po)Sitive seinide fitite/

Inl tis caIse it canl lic sect-u that)( 19) is Indeed eqim tlc-ut to) I 1en. This is most c.sl

e-stablished b\ rucallitg tiai X is I lrt-iitao, aiid %%orkimie ti I(, clepitral

rep iesutt i i c

Ill tl-. I Ill UnIiplics( ) . \\liereti- ( PO (cl. 11,1 111ut1l\ ( l0). Tls toot I va'.iI

tthes \eeittee sim l) lis e .11 let eeoc 4,11 te. (d \% egetilt leit St l \Iheell(fi rieeti it

%%Im Vieec maet iefit isd lateeisl\ tenIs these the the llit eel l ( f.efllitleec 1111iek-tls

cleie \ . gte ~seeeelc el schtiltt ill-,,,- thee-Ih t 1lleecce)i I'lltee all l te \11v c

theifitn staa .i(e ecedliiet I XI.'or cqtmiealeietlhtI ileedcs ict ne-lae-the f ali immi

, miteieeccm Pi l l lv\ 10*~ l it Ie tle.It th- l. l ti 11 s 11.1i k.,tuieneel ti lite 1,41,sutI\

19
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3. Example
As a simiple exunmple to illustraite our re:sults inl the last section, consider the

niatrix

1 0( 0

1- :1 1 0

This is ak X alid NLuCl ler matri-Ix. 'It1e -onidit ions (7) meain that the Stokes vctor should
be ai 't inic-ilike' %ech ir \\ii h p'(sit l\ye timei-ti nmponcnt. lictnee any 4 )< 4 rea.;l rmatrix
%%h ich maips C%(.r\ 't ire- I kc' %ctojr %% ithi positivec timne-cotiupoitent inito al vector \% ith
these- propericis Is anI aicceptiible \IlIOcICi' mat!\ .ix 1 i (20t) clea.rly mevets this

reqirmen. 'o'nlil'.these, conditions aire idtciu iiI to thlose imIposed on proper
LairentZ r:&ist 0- iliti1ui1, ILlt ( io\%teeI t eticin(tit'ram' i lenin )

the \ cct r.

TIhu tnlatri\ tcorruspotding~ to tis .11 is

0 0I

I t Is tisly\ lccked thi 2(1) .ltisfec (8) ;ind, eqii\lviitl\ (21) "atisties t19). Y'et, it .

LI4ie'. inot saiiist\. the( iiutti\ kotidit lit) ( 10) and 1Illic does* flot represent i
(Itlrni l sti I(S\ stenil. 1it tat Ithere exists no .1 iniatri% trom %\hich the .1 A l a ch
kieri\ ed In the( tur-in (9)., Tlln simp11le-101kig NIulIe1r matrix \\ hich chiul'es necither
the In~tenslt \ ill'r thet dUe!i'eC it pollarTization. 01t AM\ input statel. IS non-deterimnistic
tor It,; V\ inl IN is not po.tflvv wiulitdtite it haIS cigcmalt('s ( I1 1, 1.

A, r ii otherI Suil'lc txviille \\v cie thet matrix

Ihv it itlit~pk

4. Concluding~ remarks

do'crti~i'iis~slteiit Thc' lit cs iind Sufitt ilit cooitto tor this is Lt' en h\ the(
IltIjii\ t"11i.iit4.i I ht Ill stititiiis ill \%hIcI1 thu ijt'm'ioAIs (1ilt, .\IM tI\ 1,0totitte

tiiiLt!Ii\(I cit l ic h oIti\ i's t iAl Iloii-iievati\ , Iol. to' i ider these.
* ~ ~ I Oi iiit1ites.te til . ilitoit lt'i iltut t iet Sc;ihurkcotudItIonf (11t.

'Th11" tht- \luj-Ileutuu0 ' dut ide niutII;Ilht )ill, tm) distoitt clalss': (lilt' ''tilt
(ilsttiL' 'eiittlttiite \i 11t1i tiu hltcoti twil tt1 ai \ i 11ixtha has at least one,
liii' 'i~oit ulia I us tiiet t Ifne dikti.iIatttiti iultt ~ sara

20
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Relationship between Jones and Mueller matrices for
random media !
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The effect of a linear random medium on the state of polarization of the transmitted light is investigated, and the
connection bet,veen the Stokes vector formalism and the coherence or polarization matrix formalism is discussed.
It is shown that an ensemble of Jones matrices corresponds to the Mueller matrix in general.

1. INTRODUCTION 2. THE COHERENCE OR POLARIZATION 0

When light propagates through a linear medium, its polar- MATRIX AND THE STOKES VECTOR

ization properties are usually described either by the Stokes We consider an optical field in the form of a quasi-mono-

vector formalism' or by the coherence matrix (also known as chromatic plane wave propagating in some direction charac-

the polarization matrix) that was introduced by Wiener2 and terized by the unit wave vector x. say, the z direction. Let E

by Wolf. :' The effect of many non-image-forming optical be the complex analytic signal representing the transverse

devices on the light is then to transform both the Stokes vector field. The field can always be resolved into two

vector and the coherence or polarization matrix, so that the orthogonal components, I and 2:

device can be represented by a transformation matrix. This
transformation is usually known as the Mueller matrix 4  E = Eli, + E- 2,(

when it acts on the four-dimensional Stokes vector or as the where fi, f2 are orthogonal unit vectors. (1, e2 could be real
Jones matrix" when it acts on the 2 X 2 polarization ma- unit vectors in the x, , directions, corresponding to orthogo- -

triX.6,7  nal linear polarizations. However, sometimes it is more
Even though there exists a one-to-one correspondence convenient to resolve the field into more general orthogonal

between a polarization matrix and a Stokes vector, the de- states of elliptic polarization, in which case fi, (2are complex.
scription of optical systems in terms of Mueller matrices In any case the transversality of E is expressed by the condi-
appears to be applicable to more general situations than tion %

does the description in terms of ,Jones matrices. This was -
already pointed out by Azzam and Bashara, 5 and Howel 9  K = 0 (i = 1, 2) (2)

has shown that some optical devices can be described by and the orthonormality of c1, f 2 by
Mueller matrices but not by Jones matrices. , i, j 12).(

In several recent publications the constraints that must be =* , s= (i) j = q

satisfied for a Mueller matrix to correspond to a Jones ma- If the field is fluctuating, then El, E2 in Eq. (1) are random
trix were investigated. i" 14 Simonl 2 and Barakat ' found variables described by an ensemble, which we shall assume
nine constraints that tire necessary if a Mueller matrix is to to be stationary. The 2 X 2 polarization matrix J is the
be derivable from a single Jones matrix, and more recently covariance matrix of the two variates E l , E2 and is given by
(il and Bernabeu1' found a single condition on the trace of
the square of the Mueller matrix. These results apply to J, = (EE7*), (4)
propagation through a deterministic optical device.

On the other hand. some optical systems are nonde.ermin- where () denotes the ensemble average. By definition, J is
istic, and they can be represented by an ensemble. In what Hermitia and nonnegative definite, and its trace is a mea-
follows we show that when an ensemble of transfrrmations is sure of the mean light intensity e E The effect on J of
introduced to describe certairn stochastic non-image-form- changing from one set to another set of base vectors l and s
ing optical systems, the two descriptions can be completely is describable by a unitary transformation on J. It follows
reconciled, and both are equally general. In the special case that there always exists a basis i, . in which 4 is diagonal,because every Hermitian matrix can be diagonalized by at
when the ensemble reduces to a single realization, the trace becaus trynsformtionm
condition of (;if and Bernabeu follows naturally, unitary transformation.

In Section 2 we review the properties of polarization ma- eithe degree of polarization P of the light can he expressed
trices and of Stokes vector, and in Section 3 we describe the either in terms of eigenvalues of ,Jor in terms of the unitary
mathematical transformations that 'haracterize transmis- invariants of'.] in the tform

'

sion through a deterministic device, In Section , we intro 11 = 11 - 4 det /(Tr j) 2 U':. (5) 5
duce an ensemble of transformations to represent a random
linear device, and we examine the corresponding relation It follows from either form that 0 - P -5 1 and that P = I
between the .hones ani Mueller matrices, when del 1 = 0 or. equivalent ly. when one eigenvahe of J is -#
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zero, so that only one kind of polarization is present. On the S, = Tr[da '01 = J, , I"' (p = 0. 1, 2, 3). (10)

other hand, P = 0 when the two eigenvalues are equal, and J when the summation convention is applied.

is then proportional to the unit matrix, corresponding to an
equal mixture of both polarization components. It may be

shownS that any polarization matrix J can be uniquely de- 3. TRANSMISSION THROUGH A LINEAR

composed into a fully polarized part and a fully unpolarized OPTICAL SYSTEM

part. When the light beam is passed through some non-image-

The four elements of J can also be used to construct four forming optical device such that it enters and emerges as a

real parameters known as the Stokes parameters,' which are plane wave, the new field vector E', given by
given by

E' = E,', + E2'c2 , 11)
S., = <EE* + (KE 0 ),

has components El', E,, that are often linearly related to the

old components Ej, E2. For brevity we shall henceforth
S, = ,EE, * + EEj , refer to this device as a filter. We may then represent the

S4 = iI(EE*) - (EE,,* ) (6) filter by the 2 X 2 transformation matrix 7'. usually known as
the Jones matrix' such that

and also represent the state of polarization of the field. The

four parameters are often considered to be the components E

of a four-vector S, known as the Stokes vector. In terms of where summation on rep., ted indices is again understood.

the components ofS the degree of polarization is then given For the moment we take tile ej.y nts ofT to have definite

by values, i.e.. they are not random. ,rplicit forms of T for
2 + ,.2 + S:21',I (.1=+ 2)'/S.(7) certain common filters, such as a compensator or phase

plate. a differential absorber, an optical rotator, and d polar-
Another connect ion between the Stokes parameters S, (U izer, have been given1',1 7

), 1. 2. 3) and the polarization matrix J becomes apparent let us now examine how the polarization matrix J and the

it' we express 4 as a linear combination of the four linearly Stokes vector S are affected under this transformation. We

independent 2 X 2 Pauli spin matrices find from the definitions [Eqs. (4) and (12)1 that the new

polarization matrix J' is given by

= Tjm(E,.E,* )T1,1*

S+ =T,,,JmnT,,1j (13)

or, in matrix form,

1X= 7JTV, (14)

o[ (8) where V is the Hermitian adjoint of 7'. Hence J is related .

-i: (0 to,1 by a similarity transformation involving the same ma-
trix T that transforms E to E'. However, as we show below, '

which form a complete set for the representation of any 2 X 2 there exist linear filters whose effects are describable not by

h~atrix Then we find that Ira nsformat ion (12) or (14) btut only, by an ensemble of such

tranosh rmations."
.p = ,, = 0, 

1 . 2 :11,  (9) l.et its now examine the corresponding transformation

where summation on repeated indices is understood. It role for the Stokes vector S. Under any linear transforma-

tollows that the Stokes parameters are simply twice the tin the new Stokes vector S' is related to the old one by

coefficients in the expansion of the polarization matrix J in S , ,. , 0, 1, 2, 3). (15)

ternms (If Pauli matrices.
Thit, immediately leads to ant her expression for S.. [et The Ix .14 transformation matrix M., is known as the

os iiultiply both sides of Eq. (9) on the right by another Mueller matrix.' We niay readily obtain the form of Al.,

t'auli spin matrix o" ( = 01. 2. 3 and take the trace on \hen the field vector obeys the transformation Eq. (121 by

both sides. Then we obtain making use of Eqs (10) and (14). We then find that

I S, = lrid'a,"I
TrI

"l
a

b 
' I %. 'l'r[ a' lTr

IjT4a7 a
2= 'tTT& a'1 (16ia)

levalling that the product of two different l'auli matrices
wIthI, tl' ,,f t ltliree Io'kii mat rices ,'I', ,, . v. which is

,, -,.:r. when k, = in *."'htch t' w i C rnv (4ntik 2, and we

,,brain finally Ve nw substitute for ,1 in Eq. (15) from Eq. (9) and otain

VV-
,-€
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S i Tr[Ta'iTfaot ]S,. (17) By using Eq. (18) we may readily derive the simple trace
2 condition on the Mueller matrix that has been shown to

Comparison with Eq. (5 shows that in this case the Mueller apply to any nondepolarizing optical system.1 4 If M de-
matrix is given by notes the transpose of M, then from Eq. (18)

= 1 Tr[TaWT16 1 Tr(a'r'MTa""Tj Tr(MTM) - M,,
2 21

I T T 'a (18) = 4 TrLT~iT7oI0iTr[T,,7'. (22)
2 n" qm m " P

and it is evidently related to the 2 X 2 Jones matrix, where we have made use of the fact that the trace is invariant

It is apparent from Eq. (18) that to every Jones matrix T under cyclic permutation of factors. With the help of theIt i aparet fom q. 18)thatto ver Joes atrx T general matrix rules
there corresponds a Mueller matrix M, but the converse is

not necessarily true. As we show below, there are physically TrIA]TrIB = Tr[A ® B] (23)
realizable but nondeterministic linear filters whose effect on
the polarization matrix is not expressible in the form of Eq. and
(14). although the Stokes vector transforms as in Eq. (15). (A o B)(C o D) = AC o BD, (24)
In particular, under the similarity transformation (14), an
initially polarized light beam always remains fully polarized, where 0 denotes the direct product, we can reexpress Eq.
although the degree of polarization of a partially polarized (22) in the form
beam can increase or decrease on transmission through a Tr(MTM) = 1 Tr[Ta,Ta ® Ta'0T"o
linear filter. 4

In order to show this let us choose the polarization basis in = I Tr[(T,"" 0 Ta)(Ttam )
which the original polarization matrix J is diagonal. If the 4
light is fully polarized, only one eigenvalue, say 11, is nonzero,
and J must be of the form =- 1'r[(T 0 T)(W"' ® o')(T 0 7M")(c ® a')].4

Jmn = I6.6.1. (19) (25)

Needless to say, under these conditions det J = 0, and from From the explicit form [Eqs. (8)] of the Pauli matrices we
Eq. (5) it follows that the degree of polarization P = 1. Let find that
us now calculate the degree of polarization P' of the light [ 000
beam emerging from the linear filter. With the help of Eq. 1 0 0 1 0
(19) we have, from Eq. (13), - 2 7h) at ,,0 (26)

Ji/ = TT*I 1  0 0

so that and this matrix commutes with any 4 X 4 matrix of the form
T ® T. Moreover, its square is the unit 4 X 4 matrix. Itdet J' = 1j(T 22T*T 1 T2 * - T 22T21*T 1 T2 ,*) = 0. (20) follows that

Hence P' = 1, which implies that polarized light remains Tr(MM) = Tri(To 7)(TV o 7V)J
polarized after passing through any linear filter whose effect
is described by Eq. (12) or (14). Evidently, a depolarizing and, with the help of Eqs. (24) and (23),
filter is excluded from this category. However, the action of Tr(MTM) = Tr(Tr @ TT )
a depolarizing filter on the Stokes vector S is still describable
by a transformation of the form shown in Eq. (15), although = [Tr(T7)] 2. (27)
the actual transformation matrix M is then no longer given But from Eq. (18) we have
by Eq. (18). For example, for the fully polarized light de-
scribed by Eq. (19) the Stokes vector S has components (Ib Me = '/2Tr(T74 ) (2$)
( ). 1), whereas the Stokes vector for unpolarized light is so that finally
always of the form (1, 0, 0, 0). The 4 X 4 traisformation
mat rix of the form Tr(MM') = 4M,,,'. (29)

[K al b, Kl This is the necessary and sufficient condition found Iny Gil

M 0 a, b. 0 and Bernabeu14 for a Mueller matrix to represent a nonde-

0 0:' h 0(21) polarizing optical system. We see that it holds for every
0 b4  Jdeterministic optical system described by Eq. (12).

converts (I1, 0, 0, 12) into (KI. 0. 0, 0) and therefore repre- 4. REPRESENTATION OF A FILTER BY AN
sents a fully depolarizing filter device. The extra degrees of ENSEMBLE
freedom available in M permit this possibility, whereas there
is no 2 X 2 transformation matrix T to represent this filter. So far we have considered only deterministic optical sys-
In this sense the Mueller transformation matrix appears to tems. But in some situations, for example when light is
be of more general applicability than the Jones matrix, passed through lhe atmosphere, the system is no longer

25
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deterministic and must be described by an ensemble of fil- M .= 2 a VCCP, (Y P9 t (37)
ters.8 We shall represent a typical element of the ensemble 2

by a 2 X 2 Jones transformation matrix Te) and assume that When Eq. (18) is rewritten with 'Tnpqm in place of the prod-

it occurs with probability p,. The action of the ensemble of uct, TnPTC because the ensemble has only a single mem-

filters on the incident light E is to generate another ensem- her, then Eqs. (18 and (37) become formally identical.

ble of vector fields E'(e) generally with different polarization Similarly, if we make the same substitutions in Eqs. (13) and

states, such that (31), the two equations become indistinguishable. We have
therefore demonstrated a one-to-one correspondence be-

E, ' ' = T,) 1 'E,. (30) tween the transformation laws for the Jones and the Mueller

We emphasize that the new ensemble associated with the matrices and have shown that Tv,, completely determines

filter is in addition to the ensemble formed by the various both transformations. Any single realization of the Jones

realizations of the incident field. In constructing the ele- matrix Pe) is clearly inadequate to describe the optical sys-
ments dJ' of the polarization matrix of the light that has tem. The ensemble-average product is needed for the calcu-
psethrofgh the paizationstemtrx o the lihto t a e lation of quantities such as J,1 that are of the second order in
passed through the optical system, we then need to average tefed

over thee ensemble also. Thus we obtain from Eqs. (13) and the field.
Finally, Ae consider the problem of inverting Eq. (37), or

deriving 'T,,,,, from the Mueller matrix M,,,. For this pur-
pose we use Eq. (37) to construct the following sum over the

Jr' =  P(ElEC j*) indices P, v:

e , =, 'Tj,7 m " ' ,l" o Y (017 " , (38)

- P,.Tt,,',Jmn T (31) with summation over repeated indices again understood.
But, from definition (8),

or (39)

= \ (PJ-T J t) T"J'S ),,, (32) When this result is used twice in Eq. (39), we arrive at

where < is a shorthand notation for the average over the e 2 M "o(M)*ak(* = " (40)
ensemble. This result should be compared with Eq. (14). which is the inverse of Eq. (37) and shows explicitly that
In this case X can no longer be related to J by a similarity 'T£pq, = (TnP(C.tTqm("(), is completely determined by the
transformation, as for a single realization of the ensemble. Mueller matrix M,. However, there is no unique procedure

Moreover, because of the e ensemble, it is no longer true for constructing the ensemble of Jones matrices Tnp('
), ex-

that polarized light passing through the optical system re- cept in the degenerate case, when Eq. (29) holds and the
mains fully polarized. Thus, if d is given by Eq. (19) as ensemble reduces to a single realization.
before, when we calculate the determinant of J' from Eq.
(32), we find in place of Eq. (20) ACKNOWLEDGMENTS
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Non-cosmological redshifts their strengths.
A generalization of' the elementary formula 14) for radiation

of sectal lnesfrom three-dimensional steady-state (that is, statistically station-
ary) sources of' any state of coherence is knowAn', Or special
interest in the present context is the form that the formula takes

EmilWolfwhen the source has the same normalized spectrum s,,, (t i.
D~epartment of Physics anti Astronomy, and Institute of optics, ( f(' s,(w) dw =I I at each point in the source region and has a
t'Ini'ersit% of Rochester, Rochester, New N ork 14627, UISA degree of spectral coherence' (appropriately normalized cross-

spectral density) juQ(rI, ir. w) that depends on the position vec-
tors art and ar ' of any source points P, and P * only through their

We showed in a recent report' (see also ref's 2-4) that the normal- difference r. - r, If'. in addition, for each t'requenc% that sig-
ized spectrum of light will, in general, change on propagation in nilicantly contributes ito the source spectrum. the spectral corre.
free space. We also showed that the normalized spectrum of light lation length [ the effective spatial width V1 of* ;P (r', to 1 is
emitted by a source of a well-defined class will, however, be the small compared to the linear dimensions of the source, the
same throughout the far zone if the degree of spectral coherence normalized spectrum %',' '(u. to of' the emitted light in the far

*of the source satisfies a certain scaling law. The usual thermal zone, in a direction specified by a unit vector a. becomes I see
sources appear to he of this kind. These theoretical predictions equation 13.11?) of ref. 8)
were subsequently verified by experiments'. Here, we demonstrate sV(w i)(ku.
that tunder certain circumstances the modification of the normal- ',' 'I u, w) (6 1 h

-. ized spectrum of the emitted light caused by the correlations f.5 1 a)1w M1 k u, to ia
between the source fluctuations within the source region can pro- where )iQl K, w I is the three-dimensional spatial l-ourier trans-

Sduce redshifts of spectral lines in the emitted light. Our results form of the degree of spectral coherence pi(r ,w
suggest a possible explanation of various puzzling features of the au,)(r, - ri, to).
spectra of some stellar objects. partictularly quasars. Let us now choose as the normalized source spectrum %,,)w I

N.To explain AhN source correlations influence the spectrum of a spectral line with a gaussian profile
the emitted light consider a very simple example. Suppose that

*two point sources 1, and P,, bave identical spectra SQ1 io and - x 'a" -,'11 ~ 7
that measurements on the emitted fid are made at some point 5% ~ 2r p-w wlojl"w, i
P. Fhe sources are assumed at test rcatv to an. oh-,erver at . ''ad upsetata ac llcie frequenc. to, the source

*Assuming that the source fluctuations can he described hy a correlation decreases with the separlation r' ;r, r, of clans two
stationarv ensemble, the field at P) may he characterized by an
ensemble { V( P. w 1 of frequency-dependent real izationsi", each source point,, ini a gaussian manner. that is
of' the form p,,Wn, wI expl r' /2r, Iw)) (9)

dC)e' R, e On taking the Fourier transform of equation IN8i and sbtttn
w)-Q P, w I R 4. Q(V t -1 the resulting expression into equation (M) we obtain the follov-

ing expression for the normalized spectrum of the emitted light
where (Q( P,, to)[, (j - 1. 21, characterize the strengths of the in the far zone isee equation (3.21 ) of ref. KXI
two fluctuating point sources, RI and R. are the distances from
11, to P andi from P. to P respectively (see Fig. I I and k Wito/c, 5,(wr iwi(o exp -- (ko,(w ,
c being the speed of light in vacua). For simplicity polarization sl 1w -- J oSQI I(w) exp {[ka,. (to ) dw
etlects are ignored anid hence V and Q are taken to be scalars
The spectrum of' the light at P is then given h) Here, slw"(w)t is written in place of s%'J'u. w), because the

spectrum of the far field is now independent of u, as a con-
S, I P. u) I V' P w I VI. to)) (2) sequence of the assumed isotropy of 1AQ (see equation I.

where the asterisk denotes the complex conjugate and the ine formula (9) shows that the spectrum of the emitted light
angular brackets, denote the ensemble average. On substituting i the far zone depends both on the spectrum of the source
from equation 11) into equation 12) and using the fact that fluctuations and on the manner in which the effective source

correlation length cr,)w) depends on the frequency io.
(Q'i )'. Q( P, t i~ - (Q* PO, to Wti V, (o) S,),Iw to ) 31 Let us consider two particular cases. I Suppose tiist that

the following expression is obtained for the spectrum of the ur w sidpnen fw etn denote the ( now constant)
emitted light at P: value of fr,., and with swIgiven by equation (7), one can

readily evaluate the integral in the denominator oil the right (If
1 P. 1 )sW equation 19) and one then finids that

R.r R1. her

F is thle so1-c.alled ro-.'-pcctral detiIs If the ourcc fluctuations
antdk c c etiotes the conildes con jogatc (iIbi

1 lie tIrnbitim (41 sOmws that the spectrumr .St I~ to is. inI
verict-iI. not lust proiiortnail Iol.,, but is nmodified 1,s the When the source is etlectisely spatiall\ incoherent. 0 . Mhen
IkiarrcIaiion. choiactii/cel h\ It_( P. 1' I, wIitwcen the Ituctu. according to equitol It11) A x. an.d a 'I and it follows froma
aI Io n s caI t h 'oN s I I , ~t r c tvh QI i P, I al I Q' ( ' P. w On I ('qutitoil ( Iti and C .I that in this case

.1 .i 5)t1- 5 (r\ '.pccIA issor exanipic, when the sOl~rce tlutu .II
ti~ons tir unih1rielaitedj 1, 1, 1",,, 1 0 1 ssiil S, ( P I) b e 1,1*5,

f-prtional to S, 1,w I flen~c. in general, the spectrum oit the lence, iti the limiting case of' at cotnpleteI\ incoherent source
light 9cier-ited b, twol point soujrces depends not oniv (In their if the class that is considered here, the normalized spectrum of'

baeitibl at- m o[ he -rrlanoi between the tiiotuatious (it the emitted light it, the tar ,one is identical with the normaliied

tar .....
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S- - 0.8- o

SR2  0 0.6

7 1,0.4
7 (n

.7' 0.2
P2

Fig. I Illustrating the notation relating to derivation of the 0 3.25 3.75 4.0 4.25
formula (4).

W no's

spectrum of the source fluctuations. Fig.2 Spectra s' f 'of the far field from sources with spectrum
lowcver, when the source fluctuations are correlated over an (s(w) - (hS2-) ' expI -(w - i,,)2 If]'J and degree of spectral

effective distance > 0, equation (10) shows that the spectrum coherence o(r', ,W) exp(- r' 21: 2). with wit = 3.887 x 10" s '
s'(), although it is also a line with a gaussian profile, is (A,,v 4. 861 A) and -9.57 I0 s '. for several selected values
centred at a lower frequency w0) - .,,l a'< (t. Hence the source of the effective source-correlation length C. The solid curve (C -0l
correlations give rise to a spectral line sV'(o) that is redshifted also represents the source -pectrum so(s,).

with respect to the spectral line produced by the completely
spatially incoherent source with the source spectrum so(w). The for the spectrum of the light emitted by a planar secondary
shifted line is narrower, having root-mean-square width 8'= source of a well-defined class to have certain invariance
,5/a * 3 and has a-times greater height. Examples of spectra properties on propagation. It will be shown in another publica-
of light in the far zone, produced by several sources which emit tion (J. T. Foley and E. Wolf, in preparation) that for three-
the same spectral line but which have different correlation dimensional primary sources of an analogous class, whose
lengths are shown in Fig. 2. From the formula (10) one can degree of coherence satisfies this law, the spectrum ofthe emitted
readily deduce that the relative shift of the line, namely, light has similar invariance properties. We conjecture that the

, ( usual thermal sources obey such a scaling law.A (13) Now briefly consider the question of a physical mechanism
A, ,, for producing source correlations. Such correlations must clearly

A, 2#rc/w,, A,',= 2frc/o,) is given by be manifestations of some cooperative phenomena. At the
atomic level possible candidates may perhaps be superradiance

I-1 =(14) and superfluorescence". An effect of this kind was first predicted
by Dicke in 1954 when he showed'0 that under certain circum-
stances energy from excited atoms may be released cooperatively

which shows that in this case the redshift increases quadratically in a much shorter time than the natural lifetime of the excited
with the spectral source-correlation length C. (2) Next consider states of the atoms and with much larger emission intensity than
the situation when a~woo) = a/w where a is a positive constant. would be obtained were the atoms radiating independently.
"The expression (9) for the normalized spectrum of the emitted
light in the far zone now reduces to

ti( W "(5 1.0-

S'to)) =, [s 0,(w)/w'] d1

Note that this expression is independent of the value of the 0.8 S ..

constant a. S

When sl w) is a line with a gaussian profile, given by equation 0.6
(7), the spectrum s '(w), given by equation (15) is no longer .Z 0.6
strictly gaussian but it can he closely approximated by a gaussian
and can be shown to be redshifted with respect to sQ(w) by the I
relative amount 30.4-

(16)

An example of this situation is illustrated in Fig. 3.
This case [r, (w) = a/liti is of special interest because, accord-

ing to equation (8). the degree of spectral coherence is now 3.7 3.8 3.9 4.0 4.
given by

S;AQ(r', w) = exp [--(kr')
2/2(a/c)], (17)

that is, it has the functional form Fig. 3 The spectrum s, '4 ,) of the far field from a sourt:c with
source spectrum sv(,i) i S.'2w) ' expi i. w,.A'I .nd

p ,fir'. i,) Ift Al*) (/A io/i- ? tr n/ A (IN} I degree of -pt p t al Loihcrenir ,,r. .',I op Ar I I '''l u./,)'I

I hItus the degrt'e ot sr'ct iii 't 'I - ,'|l eof the sourcc dlist rihution I a lin ihirary .iinstntj, wtiih ,,,, % h? s lii', .. (A,,
,w gtiis the thrvfecl ilit,,otciithaloge sofuarceirenht, I 16 nd ) and JA' '. Y1he xOure 'fietifl r % it,,I Is

now %atisfie% the threeldimensionalI analogue of at requirement shown for comparison Note that p,,Ir. w now oheys the sualing
Icalled the scaling law) derived in ref. I, as a sufficient condition law.
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Howeser not enough is knossii at present about the coherence It seems worthwhile to note that there is a maximum line shift
propertes of large three-dimensional systems of' this kind to that can be produced by source correlation% 'This can he seen
mike it possible to determine whether superradiance and super- from the basic formula (6) which indicates that %', '(u, w 1(0
llutorescence might insolve correlations that could gise rise to when %,,Go I 0I, implying that the spectrum of the far field can
spectral line shifts. only contain those frequencies that are already present in the

I here is, howeser, quite a (ijtieent mrechanism, which can be source spectrum. Consequently the maximum attainable
dci bed at the macroscopiv les ci. aind which can Imitate effects frequency shif't of the line cannot exceed its ellectise I requecc
ot' source correliiions. namels utlec's of' Lorrelations between range. Howes Cr, any frequency contribution from the 'outsc
he retractive index i par of 1rontiit in a %patt ally random but spectrum to the niormalized spectrum of' the far field can be

* ~ ~ fah itistclv h~inimigeneoiis, torte. invariant medium If a wave greatly magnified iir greatly reduced, as is evident from equation
11 iuinnites suc h :1 inediir ,,I say a dlute gas. ihen, as Is well (0) and front Fig 2.
knowxn, the mnedium ict, its at secor1dary source, nanmely' as at set We have mainly considered effects of sourcr correflitions
of oscillating charges sut tin motion by the incident wave. T-he under circumstances when the source spectrum consists of" a

*secondlar\ waives produced by the oscillating charges then com- single line and when the degree of' spectral coherence p, that
bittes %Ait) each otihvi ind Aith) the icident wave and generate chatacterizes the source correlations depends on a single para
tihe scattered tecld Itit: gas is not too dilute the collective meter. Preliminary calculations show that with at suitablly chosen
response of the miicroscopic. charges to the incident field can be u(, which depends on a larger number of parameters. redshift.
described b', imicro~copic paramneters such as the dielectric of s everal lines may be produced, all of which will base ipproxi-
sisceptibifit (it (ire refraict e Index. Nors within the ikL uacy mately the same :-values,.

* of tire first Born aprpros oratirin tire basic equation for scattering In this article we have considered redshifts of spectral lines.
o(f" the sarne t~irm its the basic equation for radiation from However, it is not difficult to specify source correlations which

primary sources, the 'equivalent source' for scattering being the will produce blueshifts4. Examples of this kind are given in at
pitodttct oft the (aciirinig potential (which is a sinmple function forthcoming publication''
oll the refractis e idexs arid ofilhe incident wase. T'his correspon- It seems plausible that the mechanism dliscussed in this article
d&rtce clearly implies that our results regarding the efiects oif may be responsible for some of the so far unexplained features,
source .,orrelatiorrs otn the spectuum of' the emittedi light must of quasar spectra, including line asymmetries and small differ-

d hisc analogues regardrtng the effect,, of' it spatilly random enees in the observed redshifts of different lines. In this connec-
- inediumr "sit h correlated ret'ictive indle\ distribution on the tion it is of' interest to recall that the role of' coherence in the

l petriunm of the light that is scattered by it. Ibhis topic will be emission of' radiation from quasars was stressed by Hoy ic.
discussed elsewhere. Ilurbidge and Sargent in a well-known article'- ,

I! et u 0nw cnie sonimpiain ofti njvi.Uing I thank Mr A. (amliel and M~r K. Kim for carrying out

equationt 14 ), the spctral line tint fig. 2, produced by tie source computations relating to the analysis presented in this article.
who)se correlation length 4 A,, is readily found to have a redshift Thlle fact that scattering can also produce shifts of spectral lines
given by : 0.0241 with respect to the source spectrurr. It is of was noted independently by Professor Franco (i, who in-
interest to note that it .in observer detected such a redshift formed me of this result when commenting on an early sersion
unaw are ol it-, true origin and interpreted it of tire basis of the of' the manuscript of' this article, This investigattion was
lioppler shift fiirmnula i/c - .AA/A,, b e would incorrectly supported by the NSF and by the US Air Force Geophysical
conclude that the source wats receeding from bin with a speed L-aboratory.

10(0241c i 7,230) kin s

1 AllI. I MS, R,, I's ll WO1 21101t V aICI, W it & Wo,,i I Opl- 4,-t,, 145 :S9I V P
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Red Shifts and Blue Shifts of Spectral Lines Emitted by Two Correlated Sources

Emil Wolf"'
Department of Physics and Astronomy, University of Rochester. Rochester, New York 14627

(Received 24 February 1987)

It has recently been shown theoretically that correlations between fluctuations of the source distribu-
tion at different source points can produce red shifts or blue shifts of emitted spectral lines. To facilitate
experimental demonstration of this effect a simple example is analyzed. It involves only two small ap-
propriately correlated sources and brings out the essential physical features of this new phenomenon.

PACSnumbcrs 42.68.Hf, 07.65.-b, 42.1O Mg

I showed not long ago that the spectrum of light pro- The main features of this theoretical prediction have
duced by a fluctuating source depends not only on the been confirmed by Bocko, Douglass, and Knox, using
source spectrum but also on the correlation that may ex- acoustical rather than optical sources. An account of
ist between the source fluctuations at different points their experiments is given in the accompanying Letter.5

within the domain occupied by the source.' This result Let us consider two small fluctuating sources located
was recently confirmed experimentally. 2 I also showed at points Pt and P2. I assume that the fluctuations are
that under certain circumstances source correlations may statistically stationary. Let [Q(Phw)} and IQ(Pz,w))

produce red shifts or blue shifts of spectral lines in the be the ensembles that represent the source fluctuations6

emitted radiation. 3'4 This prediction has obviously im- at frequency w. Furthermore, let {U(P,()1 be the en-
portant implications, particularly for astronomy, and it is semble that represents the field at point P generated by
therefore desirable to verify it also by experiment, the two sources (Fig. 1). Each realization U(P,w) may

In this Letter I analyze theoretically one of the sim- then be expressed in the form 7

plest systems that will generate spectral shifts by this t/kR1  ~~
mechanism; namely, two small correlated sources, with U(pe)-Q(PkO)--+Q(P,,W) ,  (I)
identical spectra consisting of a single line of Gaussian R + R2
profile. I show that with an appropriate choice of the
correlation, the spectrum of the emitted radiation will where. R, and R2 are the distances from P, to P and
also consist of a single line with a Gaussian profile; how- from P2 to P, respectively, and k -w/c, c being the speed
ever, this emitted line will be red shifted or blue shifted of light in free space. The spectrum of the field at the
with respect to the spectral line that would be produced point P is given by
if the sources were uncorrelated, the nature of the shift S(PW)-(U*(P,W)U(P,()), (2)
depending on the choice of one of the parameters that
specifies the exact form of the correlation coefficient. where the angular brackets denote ensemble average.

- On substitution from Eq. (I) into Eq. (2), we find that

St,(P,t) (I/R? + I/R )SQ(() + [WQ(P1,P 2,e0)eIkR - R )/RtR2+c.c ,.J (3)

liere
SQ (W) -(Q * (P W) Q(P1, CU) -(Q* (P2, W) Q(P 2. ()) (4)

is the spectrum (assumed to be the same) of each of the two source distributions,

Wcl(P 1,P2,0 ) -(Q* (Pl'0)Q(Pz,( )> (5)

is the cross-spectral density of the source fluctuations [first paper of Ref. 6, Eqs. (3.3) and (5.9)), and c.c. denotes the
complex conjugate.

The degree of spectral coherence at frequency (o, which is a measure of correlation that may exist between the two
fluctuating sources, is given by the formulat

Po(P),P2,W) )WV(PP 2,))/SQ(o). (6)

The normalization in Eq. (6) ensures that 0< tJ9Q(Pl,P2,CJ) I 1 1. The extreme value ),u "I characterizes com-
plete correlation (complete spatial coherence) at frequency w. The other extreme value, u -0, characterizes complete
absence of correlations (complete spatial incoherence).

On substituting for WQ from Eq. (6) into Eq. (3), we find that

St (P, w) SQ (w)I/R + I/R + [Q (w)ei(R-R I/RI R 2 +c.c.)}, (7)

2646 C 1987 The American Physical Society
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P (a)(01

R, (b) (0

0.8
P,

3
o 0.6

R2N'

, 0.4

Pa 0.2

FIG. I. Geometry and notation relating to the determina-
tion of the spectrum Su(P.a) of the field at P produced by two 0 A
small sources with identical spectra S(e) located at Pt and 4.32199 4.32200 4.32201 4.32202

Pz. (units: I0
' sec I)

FIG. 2. Red shifts and blue shirts of spectral lines as pre-

where I have omitted the arguments P, and P2 in p. For dicted by formula (12). The spectrum Sq(w) of each of the

the sake of simplicity, let us choose the field point P to two source distributions i% a line with a Gaussian profile given

lie on the perpendicular bisector of the line joining P, by Eq. (9) with A-I, ao-4.32201xlO'" sec' (Hg line
)-4358.33 A), 8o-5x109 sec-'. (a) The field spectrum

and P2 . Then R,"R 2 (-R, say) and formula (7) Su(P,w) at P when the two sources are uncorrelated (pQeO).

reduces to (b),(c) The field spectra at P when the two sources are corre-

SV(P,m)-(2/R
2 )S(w)l+RepQ(m)J, (8) lated in accordance with Eq. (10), with a-1.8, ,-7.5x 10

9

sec-', and (b) w,eto- 26o (red-shifted line), (c) (ol-tom

where Re denotes the real part. +286 (blue-shifted line).

We note in passing that when either pQ(m)=O (mutu-

ally completely uncorrelated sources) or when pQ(o) I
(mutually completely correlated sources), the spectrum
Su(P,&)) of the field at the point P will be proportional By straightforward calculation one can show that this

to the spectrum SQ((o) of the source fluctuations. How- expression may be rewritten in the form

ever, in general this will not be the case. In fact, it is
clear from formula (8) that the field spectrum may differ Su(P,w) -A e - ' (12)

drastically from the source spectrum, the difference de- where

pending on the behavior of the correlation coefficient

pQ(w) as a function of frequency. A'-(2Aa/R2 )e ( ,-)'/2(a+8?l, (13)

Suppose now that the spectrum of each of the two

sources consists of a single line of the same Gaussian mu"(8?0+8i)/(+[t), (14)

profile, and

SQ(w) -A e -- ')/2 (9) i/8 1 -l/8d+l? (1S)

where A, ouo, and bo (<< oo) are positive constants. Sup- On the other hand, were the two sources uncorrelated,

pose further that the correlation between the two sources the correlation coefficient IaQ would have zero value and

is characterized by the degree of spectral coherence we would then have, according to Eqs. (8) and (9),

pQ(w) -a e - ( -,)'126t I, (10) [Su(Pai)].co" (2A/R 2 )e -t ( -
&P/l28 (16)

where a. w, and 6 (<< wI) are also positive constants. In Comparison of Eq. (12) with Eq. (16) shows that al-

order that expression (10) is a degree of spectral coher- though both the spectral lines have Gaussian profiles,

ence, I must also demand that a : 2. On substituting they differ from each other. Since according to Eq. (15)

from Eqs. (9) and (10) into Eq. (8), 1 obtain the follow- 86 < 60, the spectral line from the correlated sources is

ing expression for the spectrum of the field at the point narrower than the spectral line from the uncorrelated

P: sources. Further, we can readily deduce from Eq. (14)

that

2647
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according as Force Office of Scientific Research Task No. 23 1 OG1.

(a> 5wo,

Hence if wo, < wo the spectral line (12) produced by the (a)Also at the Institute of Optics, University of Rochester.
correlated sources is centered on a lower frequency than Rochester, NY 14627.
the spectral line (16) from two uncorrelated sources, i.e., 'E. Wolf, Phys. Rev. Lett. 56, 1370 (1986).
it is red shifted with respect to it, and if Wi > wo the 2G. M. Morris and D, Faklis, Opt. Commun. 62, 5 (1987).
spectral line (12) is blue shifted with respect to the spec- 3E. Wolf, Nature 326, 363 (1987).
tral line (16). Figure 2 illustrates these results by simple 4E. Wolf, Opt. Commun. 62, 12 (1987).
examples. 

5M. Bocko, D. H. Douglass, and R. S. Knox, following

The preceding considerations show clearly the possibil- Letter Phys. Rev. Lett. 58. 2649 (1987)].

it) of generating, by means of correlations between 6The space-frequency representation of stationary sources
source fluctuations, either red shifts or blue shifts of lines and stationary fields used here was formulated by E. Wolf, J.
inthe spuctrumorations, eithe ited t solues hift ne Opt. Soc. Am. 72, 343 (1982), and J. Opt. Soc. Am. A 3, 76
n the spectrum of radiation emitted by sources that are (1986).
tationary with respect to an observer. 7To bring out the essential features of the phenomenon, I ig-

I am obliged to Mr. A. Gamliel for carrying out the nore polarization properties of the light. Hence the functions
computations relating to Fig. 2. This research was sup- U and Q are considered here to be scalars.
ported by the U.S. National Science Foundation and by 8L. Mandel and E. Wolf, J. Opt. Soc. Am. 66, 529 (1976),
the U.S. Air Force Geophysics Laboratory under Air Sect. 11.
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Hilbert space operators are introduced into classical wave theory, which make it possible to associate a unique operator with
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THE RADIANCE AND) PHASE-SPACE REPRESENTATIONS
OF THE ('ROSS-SPE( 'RA!. 1ENSlITI OPERATOR*

(iS. AGiRW-\L , 1.1. FOLEY -'and E. WOLF'
IDijartmentOt P' Fhi %i, % and. I trir,,noi I nior',ac ' Ro, iii''tr'r. Rsh.'h', \wr1 I462.' 1 S I

Reis ed 1 7 1k toher 1IM

Hilbert space operators arc introduced into classical wave theory, which make it possible to assiiciaie a unique oiperatoir %suth
thet cross-spectral density. B\ linearly mapping this operator ontoi an associated phase-space iine obtainsa " ide class ,lgecralied
radiance functions, including two well-known ones that were introduced by Walther in a different manner. When the soiurce is

quasi-hoimogeneous and the wavelength is short enough all these functions bccoiinm ideiiticaf. anid dti unique miiii is found toi
hase all the properties of ihe traditional radiance, at least in the sourc plane,

1. Introduction representatives ol'pairs of contugate operators and e
the radiance is a functionf of a pair of sariahlcs that

In order to claritfy the foundations of radiometry a are conijugate in the sense of'Fouricr thcory. In the
number of authors proposed various expressions for present paper we investigate this similarity further
the radiance, in terms of the cross-spectral density of and we show that it leads to at clarification of the trute
the light distribution across the source I 1-5]1. Linfor- significance of the radiance.%
tunately nonc of themn satisfies all the postulates oi- We shtow in sec. 2 that even within thle tramework
radiometry for any state of coherence of tile light and of classical wave theory one may introdtuce non-
it is now know that none in fact exists, if the radiance commuting operators ;' and i, which are associ-
is to be linearly related to the cross-spectral density ated wvith position (p) and direction (s ) respec-
[6]. Very recently it was shown, however, that if the tively. In sec. 3 we associate a untique tlilbert space
source is quasi -homogeneous, the expressions for the operator (:(A, i, ) with the cross-spectral den-
radiance proposed by Walther [4,1 ] acquire, in the sity. U. sing this fact we then brieffi indicate boss a
limiit ot short wavelenigths, all the properties that one whole class (igeneraliied radiance ucinsu.O
postulates for it in traditional radiomnetry 17,81] s) may he Introduced by litlearl\ mapping r(p .5 i

It was noted 111that in its mathematical structure onto an associated p~s -phase spalce. [in sec. 4 %%c gis c0
radliomet rv has much in common with the phase- explicit expressionm for such itlappinrgs and % c titus-
space representation of quantum mechanics. In par- trate the results byv showing that the tss i epressions,
ticular the phase-space representalior of' quantum frrdac rpsdb ate t aatlot
mechanics deals with functions which are c-numnber trv a ~co uttepaesaerpecttss

((A, I. ) ohtained according to the so-called Wes I
Research supported by the Nit opail science Foundation and rule arnd t he antistandard rule of otappi rig operator
bs the Air Fit-. ( .opti-si(s tabioratiiry under \If 4SR I ask ordering). In the concluding section Isec. 5u) ss c shoss
231061~ that in the short wavelength limit all thle gencralticul
tPermanieitt adress. Scliiiol of l'hyics. I 'nisersiiy oh I tydera- radiance functions become identical. Finall\ sse shoss
bad. tIsderabad-5hi. 134 tndia.ta shntesuc s us-ooeeuti
Pernmanent adlress: tDeparnient oif t'h~sics and AvtiiinomsN. ta hntesuc ti

Mississippi State I Inisersils, Mississippi State. MS N~762. unique limit is a function that has all the properties,
(;SA,
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sity J,,(s) is the main measurable quantitN rejating to
radiation generatcd h the source. In radiometrN the
chief quantity is the radiance ,(p.s) which is
regarded as representing the rate at Muhch energ) at
frequency v is radiated from a source element of unit

p area at p into a unit solid angle around the s-direc-
PS lion. A basic radiometric formula, wkhich is always

9 F introduced from injtiie geometrical considera-
C, tions, expresses the radiant intcnsit in terms of the

radiance as

J,,sl=.%. B,.(p. s) d-/) . (2.3)

In attempts to clarif% the relation betw~een radi-

*, 1 S L- . ometry and classical wave iheory %arious expre%-
sions have been proposed for the radiance in terms

Fig I Noiiainon rcLkn1diin( ii r ulai (2 1 1r i iratfiani iflimflmi of the cross-spectral dcnsit% (( 1.5 1. For reasons that
will become apparent shoril, \%k \%sill refer to the

postulated for the radiance in traditional radiome- quantities introduced ill this %%al as i,, rhi a,

trN. at least in the source plane. ancc' fiencuo and denote them b\ thie ni bol 4,(p,

s). When appiopriate %kc will attach a supeiscript to
this s\ymbol to distinguish between the dillfrrewi det-

2. Position operator, its conjugate operator and initions. As already mentioned in the introduction.
commutation relations for classical wave theory the various expressions proposed for the radiance

have \crN similar mathematical structure as sonmc of'
C onsider a sieady-statc (i.c. statistically station- the phase-space represenitaits e of quantumi-

ary) . planar. secondarN source, occupy ing a portion mechanical operators. This similarit\ suggests that
Ci of the plane: z 0and radiating into the half'-space the generaliied radiance functions ma\ be just dif-
: - . The radiant intensityiJ,,S). i c. the rate at which ferent phase-space representatives of one and the

the source radiate% encrgN at frequenc\, i' per unit same 1-ilberl %pace operator We w\ill shov. later that
Solid angle an'liiiid a direction specified h. a real unit this indeced is lte tasc lietorc doing so \Ak %%ill intro-
\Cini S, IS knomi rit) be given h the exp~ression [1101 duceV a 5s't (it iionlliiliing rnperatits into classical

.1,wS I 2nA k li (ks . . . ivt (2.1 We consider the Hlilbert space ofsquare-integrable

Here functions of p. We associate with each cartesian
coordinate andti rof p operators X and whose

ti(f1  Io. ii 2n) 11'(P, . P_ i I eigeristates and v are defined in the usual way:

1
I

1  Ii(2.4)
-expf (f1 -P, f-P~o d 'pr, d 'p, (2.2) Next sse introduce the sector operatori v ~(. fI and

is the four-dmensional spatial Fourier transf orm of the tensor product cigenistates lP I k It fol-
the cross-spectral density function 1*p1 . p_, v). lows% from eqs. ( 2.41) that aIp P P
Further p, and p., are position vectors of any' two For oti purposes the %ariahles conjugate to .\ and
source points S, and S.. s, i . 0) is the com- i and t he asociated operators ma lie most tiaturallk
ponent (considered as a two-dimensional vector) of introduced in the lollowing wAa\. We consider mun-
i parallel to the source plane and N is the component ochromatic wavefields I (r. v) exp( 2irin (lite
of s along the normal to the source plane (see fig. I ). half-space -- ,l 0,vhich behavec as outgoing spherical S

In the domain of ph sical oriics. the radiant inien- waves at intinit in that hialf-space. I then sat-
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isfies. throughout that half-spae. the Hlelmholtz 3. A class of generalizeid radiance functioni,
equation

In an important paper dealing with radiornetr\ and
J2 -4-k-) L(r. 1') ().(2.5) coherence. Walther [I introduced the gencraliied

*where radiance function

k * n~ (2.6) il'(p. s) 0ik27t) :,v 'p. s 1(3.1)
%k here

c being the speed of light in vacuo. It is well known
that under very general conditions O r, I') miay he /FY ,(p. s r(p P. p 1P .vI)

expressed in the f ,orm titan angular spectrum of plane
-~waves. %ii._ I I IIe\p( i/s -p ) d'/)(.2

t(r, v') = a(s, ,t') exp( iks-r) d'~ (2.7) In these formulas s denotes a real unit vector and
It (p, p,. i') represents the cross-spectral densit% in

Here s (s_. s, s- (s . iis again a unit vctlor the source plane.
but it ma% now take on complex values. More pre- In the phase-space representation Of' quantumi
cise!. ',and.A, \ith 0!( , < x,0 - < zare real and mechanics at function b; o(f the form given hl, the

integral ( 3.2) is the so-called W\igner represenitatiV
A ny -- s ~ ) xv hn s;t A;I ( .a of an operator G;that depends onl a pir of non-corn-

sI(A --s ) when * -, f-S2 >1 I 2.8b) muting %ariables 1131. In analog vvith the relation
betwecen the Wigner distribution function F'\ ' and

Let us now specialize eq. ( 2.7) to the representa- the operator G~ lvhich it represecnts in phase spac. %vc
tion of the field at points p= Clt r, v. ) in the source wvill rewkrift, qi I I) in the forni
plane :- 0) and let us operate on it %kith the Iran%- (~.I I i 'k
verse laplacian. V 1 /ix.'iti). We then find that PS21,1/(0 )) P

-i% (I') s a(s . I') exptiAs -p) d 2
A ,. /cxp( iAS -P d',p 3 (3)

(2.9) where

where KP, IG(0, i. ) 1p:> 11'(p,. p..i 34 1

A% =z ;..!' -- Ik c027ti' (2.10) The function F:,"~ (p. s 1. defined b\ these tvvo

equations. may be said to be the \\ igner represent.1-
is the "reduced" wavelength. Eq. (2.9) Suggests that tive oftheli Hilbert %pace operator Gr o'(k. *~i

we associate with s an operator i b, the formula (3.4) shows that the mlatri\ elements oft his opcrilt
are just the appropriate \ alues of tife c ross%-speck- i

S - i 7 1 12.11 denlsit\ It (p,. 1)_. I' 1. It scems vvorthvvle to sites

Its cartesian components that in Spite Of its close rese)mblc to the p~hJse
space ri.prescii tatiii of' quI(l urn nietliicv the

i. t7%~t't .K 7% t'i 12.12) above relirt-cmailimi i,, based cititel on lsi i

* t~ogether \k ith the pursitioti ')pciitors, id) mil\ hepe Ii , 0(j). jI that \%ve 111't tat itiiticd
readil% be shown to (ibes t11e com II ill tion relaititons

1 IN.1- 7. ti.K1 IN% (2.131 uiicr S l) zi

xvhteh are analogous to the quantum mechanical .~I'ItP~i i q '~ t,'i~ i~u ij

communitatitoi relatioins for position and mtomen- Iic oprit 4il 12 a N, Ow lipti hu' ea

turn12I
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via eq. ( 3.4 ) nla, be expressed in many different ways operators [ 141 that every linear mapping (of a broad

b, the use ofthe commutation relations (2.13). More well-defined class) of operator functions ((a, i b
specifically. ifG; is expressed in the lorm of a poweor onto c-number functions F,," (p, s ) is character-
series in the cartesian components of'A and i,. each ized by a filter function -Q(u. v). with the following
term involving a product of these elementary opera- properties:
tors may be arranged according to some chosen rule (a) Q(u. ) is an entire analytic function of the
of ordering (cf. [14 ]). One can associate with each four complex variables u= (i ,. u, ), V=( . ),

such ordered series a c-number representative (phase- (b) -2(u.') has no zeros on the real it,-. u,-. i,- and
space representative) of 6. The function F' . v,-axes,
defined by eq. (3.3). is among the best known rep- (c) . 2(00)= 1.
resentations of the operator. It may be shown to be The explicit expression for I." in terms of (G is :

associated -.sith ( via the so-called Wevl rule of ,, - 2 2 ) j"
ordering.

It is e% ident that other gencralzed radiance func-
tions can be introduced via formulas of the form XAI'",(p As .-4 )HP, > d ,P, (4.1)
(3.1 ) and ( 3.2 ). withl* /," (p, s ) replaced by other
phase-space representatives of the operator (. If we where -

label the diflrent representatives of(; by superscript .f"i)(p - ,.S -f. (2n7 , Q(u.r "9)

.2 wc "ill then have in place of eq. (3.1 ) the formula

.,""lp. s) (4/27r).s I..;,1)"p, s . (3.5) /exp, - (u.(p-b) + ,(s -. . ] d it d v,

Wc "ill consider phase-space representatives (4.2)
F-"(p. s ) produced by mappings of the class
investigated in ref. [14). Each F',"'(p. s, ) is then

rclaIcd linearly to (;fk. . ) and it follows from eqs. 2(u. ) =[2( -u. -r)] (4.3)
i3.4) and ( 3.5 that the associated generalized radi-
ance function On substituting from eq. (4.2) into eq. (4.1) and

then substituting the resulting expression for F, '
f:-"'(p. s) -. : ,1'(p,. p2.,):,. (3.6) into eq. (3.5) and making use ofeq. (3.4) we obtain.

after some calculation, the following expression for
hr I. " denotes a linear translormation.

Wc V, ill impose on ."*Y the constraint that

. 1, - . l '(P s ) d -' . (3.7 ) (p . s) (2 7 ) 4 . J D (U,

/exp[ - i(ut-aprs. +- IXu.,')] lp1 .p, - XAi, )
MheCrc ./, .) is the radiant ntcnsit) given b% the 0
c'.prcssion (2.1 ) of physical optics. In eq. (3.7) the xexp(iup, ) du d rd 'p, . (4.4)
integral extends over the whole source plane :=O. It

Ill. ol course. reduce to the radiometric expression We see that .h,: is indeed a linear transform of the
31 xhen 4;"(p x) \,anishes for allp-vectors that cross-spectral dcnsity It'[see eq. ( 3.6)].

%pe I0% points in ithe source plane outside the region Now 4:."' must also satisfy the relation ( 3.7), with
o occupied h% the sour"c. the radiant intensilty / s) given by eq. (2.1 I i e. it

must salisl\' the relation
.4'," (p. s) d p --(21r)?., I"(ks , --- ks , v).

4. Expressions for the generalized radiance functions (4.5)

Man ol't he ornitat pertaining to the mapping iheor. desi.l-

It is knov'n form the general lticor, of phase-space opcd in rcl 1141 contain the -reduced- Planck*N constant h.

reptsceltations of functions on non-comrnuting but the. also apps to the present case if one replaces hi b\ X

7j)
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This requirement places a certain constraint on the We hae sceo that the diflelent phisc-spacc rcpre-
admissible filter functions Q(u, #'). It is a straightfor- scntatives I "' of 6 and consequentl% the ,arious
ward matter to show that the constraint is generalized radiance functions 9f,"' are associated

with diffetent rules of ordering of products involving
the noncommuting operators, and i . However, it

Let us now consider some examples. For the If i/ is seen from eq. ( 2.13) that in the limit as A ,0. these
rule of ordering ([ 14], sec. VII) Q S' ' where operators will commute and the distinction between

the different types of ordering %ill then disappear..0'v')(u, ) --.I . (.7) (onscquenlN. all the phase-space representlaties F-"""'

If we use this fact in the general formula (4.4) we of the operator G and hence also all it /i' ,cirahzcd
find, after changing one of the variables of integra- radiance incitonm 4. vi' il/h ( onth identical in i/u'

tion from a' top' = c/X that .0,, .AA" . where short-tai cl'ngth ithilt. llo ,ecr. in viev. of Friberg's
theorem (61 this limiting extprcssim cannot be

•A (pt, s):: ( k127r).. f '(p ,p'. p-- 4O'. t,) expected to have all the properties attributed to the
radiance function in traditional radiomctry for

xexp( - iks , -p') d-Ip ( sources of any state ofcolherence.
It was recently shown J 71 that when the source is

The expression on the right is precisely the first quasi-homogeneous the generalied radiance fune-
expression proposed by Walther [ I ] for the radiance tion (4.1(O) is in the limit as X -0 (more prccisely in
function, which we have already encountered [eqs. the asymptotic limit as k- I/X .0) given by the
(3.1) and (3.2) above], expression

For the so-called antistandardrule 141. sec. Vl .( .k".(s ,, )
of ordering, 2 .2' " where w p. a

.2' "(u, v) z exp( -i Xu-l2) . (4.9)
:0 when p4a , (5.1)

Ifwe use this expression in the general formula (4.4)
we find that where I'. (p, v) represents the intensity distribution

A4',"'(ps) =(kl27)-s.exp(iks .p) across the source and

X f'(p,. p. ) exp( --iks, p,) d2p,. (4.10) v(f a') (2T) if "(p'. v)exp( - ifp) d-,'

The expression on the right is the complex form of (5.2)

the second expression proposed bv Walther [41 for is the two-dimensional Fourier transform of the
the radiance function. degree of spectral coherence of the light distribution

in the source plane. The expression ( 5.) was shown
to have all the properties attributed to the radiance

5. The short wavelength limit with quas- function in traditional iadiomeos . It tillost from
homogeneous sources this result and the result cstabh!shed carlier in this

section tiah iiczd above) that iti 'lln tde No t', V;
Although the procedure outlined in lhe previous quaw-hor ou. l/it' ,'iiu rd aiaice

sections leads to a large class of generalized radiaice lir nu in t . '' (p. s ) t the claxs.t i/nit c" ha re' onsid-
functions, it is clear rm the remarks made in the ('red in/ han ' tac /lta Mt ah ' tlo'/'ttil( lmt.
introduction that none of them will satisfy all the ,icol /,eq, I I . s A i-: atid Ih. ('ion,0 0tii-
postulates of traditional radiometry for sources of any rig form (V allI i, .'ene'a/r~(d a 1diace Mltciulti\ 1,?tJV

state of coherence. However. as we will now show. be ider, fied itih it( radiance o''I raIihopial radraolr-
our theory leads to a very general result regarding the trv. ait heast tt tll po llt ill tre WXtfl '' 1411t
foundations of radiometry. It should be evident that we hase not proven, in

71
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the strict mathematical sense that radiometry, even , 121 V.I. Tatarskii. The effect of the turbulent atmosphere on

for the restricted class of quasi-homogeneous sources. wave propagation, it' S. Dept of Commerce. National
"technical Information Servicc. Springfield. VA.. 197ti). Sec

is the asymptotic limit for large wave numbers ofsta- 'S

tistical wave theory. In this connection it might be See also I, I)ohn. It, Vuso( I Radiot'izika I 1it1)64) 5,)

worthwhile to point out that the somewhat analo- I1 (i.I. (schinniko% and V.I. latarskii. Radiiphfi% ,)oat

gous statement frequently made that classical Electron. 15 11972) 11)87.

mechanics is the limit of quantum mechanics if 141 A. Walther. J. Opt. Soc Am. 63 1 Y'3 i t622, 68 (I 1,7h
1606.

Planck's constant h-.O has not been rigorously justi- [51 E. Wo'lt. I'hvs. Re. 1) 13 1976) K64.

tied to this day: and that even the restricted class of 161 A.T. Friberg..J Opt. Soc. Am. 6fi (19791 192

systems for which this statement may perhaps be true 17] J.T. Fole) and and E. Wolf. Optics Comm 55(1985 236. '

has not been precisely defined. Nevertheless we are [ I K. Kim and E. Wolf. J. Opt. Soc Am. A. in press.

of the opinion that the results derived in this note 191 F- WkolL. O ipt Soc. Am 68 (19781 6. -

sec .also A, I Iriberg. in: )ptics in lour dimensions - I 'IN(.
provide a genuine insight into the true meaning of eds. M.I. Machado and L.M. Narducci (Conference IProc *

the radiance. 65. All'. 19M11 p 113.

I IT] I WX %;lirchanii and I. Wolf .1 O pi. Soi Xii 6,4 (1,0i4 I
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Propagation law for Walther's first generalized
radiance function and its short-wavelength limit

with quasi-homogeneous sources

Kisik Kim and Emil Wolf

J. .1  hlotit .211 19f111. a'l -p11jnii 11 1tJ7

Ant tedt I law i, dtristt hr the( pr.'patgatton tit tre* 5ij(*e of tilhe fist generaiz-edl ratliaiitt-nc hion ~ intrt r'ed h\
%k ali her. A sintpilwdet t.'ry of til. law is otattinedt for I he vase when thle oolrt v is quasi homogetieons It is also

a hown that wheni thle soutrte is qutasi hotilogent-ous told tile Wave numbher is large enough (thle wastevIvnth is
stIfticieit. short) the first genteraltied radiance al-ijuirts all the* Itrolpiri ies of the rlaine of traditional rarliotnetr\ .

1. INTRODUCTION > 0. We assume that the field tluctuatitons in the source
plane are chariict eri',ed by a stat ionary stat ist ical ensemble.Itt twot well-known paperst.2 dealing with the foundation (t' We dentote ty WMr1 , r,, Le) the crotss- .spectral density if the

raddtttetry. Walther intrtoduced certain generalized radi- eitdlgta n w onsP n ,seiidb
ante funct itns. These functions have some ofll'ut not all the eotnectoligh aitiV r.tt inthe li andsc lt zspecire by.

* ~~~prtperties that are att ribiuted tt the radiance in trtaditiontal chts itie VttwIo r p tit t the atefi-somepae z = conLe -u
radittttet rN. IMuch subsequent work, aimed at t-ltrifvintg slta > l 0, theitWI j1l It ill Ittc y e 11,WIS tan lan = t
the ctnntectiton between radittmetry and p~hysical optics. stt> iwhcwewltitelvII tdlt
mtade cttisiderable use of these functiotns. We will refer to r = (r, + rJ2 p/ = r-..1.1a
I hte( ge tt.ralIized ra(Iia nce fullnc t ion mtn rttduced i n R~efs. I a tid 2 Te
ais hlit first tind the sectond generaliz~ed radiantce funcetittns itj
tg.r.f.'s). respectively. r,=r + p/ 2

, jr, = r - p! 2 . (2.11))
Approximate transport equations fttr the prtopagation ttf

either of these two g.r.f.'s were obtained by Walther,4 .ann- (See Fig. 1, where It dlenotes the point with ptosition vectotr
sttn, Frihergti Pedersen, and Bastiaans.5 ' Ani exact law fotr r.) Att expression for the first generalized radiance intro-

duce by althr,' nd dfine bv im t points r in thethe prtopatgation ttfthe second g.r.f. in free space wts recently dcdIyWl e, n eie i si
obtained by Foley and Wtlf.4 who also shtwed that whetn t ite sttttve plane z = (i, ctttt readily he generalized to apply to
source tof the optical field is tqtasi-homogeneous this Itinc- liel ptojtints Ir its ail ' t ransverse plane I1 its the half-space z >

d titi actquires. in the shtort -waveletsgt Is limit, all the proper- 0.Itaehefr
ties that are Jptst ohited fitr the( radiance in tradit ionial radi - s) = I Vr+p2 /)x~k ~ t
timetrN. They alsto obltained ant exp~lic-it expressiont for this trs=I Is. Wr+p1 r-/2xpk pd.

l n itrImuiting fotrm o f the second g. r. f. in termns of the (listributtt itn (2.2)
iltl' the in tensit 'v antI ilf the( d egre~e ilf spect ral cotherensce (if
lightl acro ss i he sotttct. where

hit the( piresent piaper we deritve, to biegini witlh, anl exact itiw -

fomr prtopagat tin ti tiihe first g. r. I. in tree space. We thlt h t1I2.3)I

conisider the fotrm thast this ptrtopagationt lttw takes %%hent theI
soturce is quasi -homogeneous. FinallY we (-tn *ider the as is th watvV tttiil( asslciaited withs the frequtenct- w and
V ittpi tic Iitn it for large wave ntumber (slit waveleItglh) tof' wamtvtgth N'. 4 is fit- speed oft light in t1111(1,5 I s,.S .s, 5 isml the first gil. in tptical fields prtoduced bY it qtiasi-httmtge, a real mt t-t itr. ;tittl S Is. ii is its transverse cititpo-
iseo us st ouTce, and we find that it is idenic ital t t, the (I torr rIllhl~d t- i1% iiiiiwlc(
spttiding limsiting ittrn ottatinedi f'or thle secotnd g.r f. ill Reft. i, iwd i i an. iitpressiItm ltr 6, intnis ttttht

tt redtuce toI the tusual Trtdioitetric trinspttrt t~ilttt o~t lt=~ il- I lr flits lirptIms 5%U sill matke list toi
* 'I~hese results, tttget her with tIhtose tlrised iii Hl~. 9, got it lIog fit. oIllII(5: rI-tIltttlh'l il(t lung agt."' Thet crs-
* ~~waY towatrd clairi'viitg the fouindtaitiont ttf raditielrY. sIwt trol tcittst \ Itt r,. r t ia rtit- rtltrtstvited tit teritis of'[FIRST GENERALIZED RADIANCE miIpwm.lmOi.otipan, 0nofi-hl'
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Fig. . Illustrating the nolatimn.

Here the angle brackets denote the average taken over this where we used the fact ,:;: .d Lrd;r , = d-r,,,, Let us
ensemble. Now the value of IU(r, w) at any point r in the now substitute from Eq. ( I it ,oto the expression (2.2).
ball-space z > 0 may he expressed in terms of its boundary interchange the order of integrations, and make use of the
values I '"I(r,, w) at point r) in the source plane z = 0 by the fact that the generalized radiance 13tr, s) at points in the
use of Rayleigh's formula' source pine is given by jcf. Eq. (2.2)]

1'(r. , f (;(r - r,. wi "'(r,, w)d1r, (2.5) 27, ,, ( f) W ....tr,, + p,12, r,, - p,,2..~~~~~~ ~ ~~ ~ ,. Y= -0~)= s "(.+ .2 , .2.

where (;(r - r,. e) is the Green's function X Cxp (iks, -p,))d" p, (2.12)

I r exp(ikir - rJ) ((;(r - r,,) =- 2ir iz L Ir - r, (2.6) where s.. is the z component of the unit vector s. We then

obtain the following expression for the generalized radiance
O)n substituting frot Eq. (2.5) into Eq. (2.4), we readily /3,(r, s) at any point r in the half-space z > 0 in terms of its

find that boundary values kl"(ro, s) at points r,, in the source plane:

W "r, r _ -) = t J ('(R 1l W)G(R , ) fijr, s) = K(r - r, s; w) 3 ," (r,, s)d 2
r. (2.13)

X W"('tr,,._)d~rmd:r... (2.7)

The kernel K(r - r0 , s; w) in this integral is given by the
where r,, r,z are the position vectors of two typical points Qi formula
and (12 in the source plane,

fi, =r, - r., (i = 1,2). (2.K) h~r- r. s; c)= (;*(r - r,, + p'/2. w)(r - r -p'/2, ) .

and

X exp(iks P')d'/,'. 
(2.14)

is the cross-spectral density of the lighl in the source plane. In deriving this expression we changed the variable of inte-

The inhtegralioi oil lie right hand side of Eq. (2.7( is taken grat ion from p top' = p - p.

twice inldelpendentlv over the sotirce plae. 'he trririla (2. 13) represents an exact law hIr the pr'ia

Iet its now change the variahles in Eq. (2.7) according to git iuii of Withher's first radiance tut ictlion from the sour.c

the Iransformation 12.11)) and according to a similar trans- pline t = 0 into the half space > t.

rm at io inolvinig the source vartables: ~We will now specialize the general formula (2. i:) to fields
generatedI by (Iuiasi-hontogeneonls sources t hat are of partic-

ru = r, + ,1,/2. r,,. = r. - p(1/2. (2.10) olar interest in connection wit h tbe If, iudation if radiotne-

r,, represents the point Q, in Fig. 1.) The formula (2.7) then Irv."

takes the form
3. PROPAGATION OF THE GENERALIZED

Wtr + p/2, r - p/2,-i = G ;ur - r, + (p - p,)/2. .w RADIANCE WHEN THE SOURCE IS
QUASI-HOMOGENEOUS

. (;r - r,, - (p - p.,)/2. 'l When the source is qt hasi-h, mu )ge nei ius, the cross-spect ral

SW'" r, + p,,12. r, -- n i d r,dp, (2.11) densiv function W"I(ri. r.- has the form'

50

%

--.', * '¢,' ",.4," % € , ' -' ,.- -, - .,' ;'"' -"-'."."N'-.'.,'( - .. " '% ,



K. Kim and E. Wilf Vol. 4. No. /June I 9S7/I. Opt. S.,. A in, A 1 "

r, .+ r,, Let us next determine the asynptt it- apprimXimatinn as I.
-' , r 2 / -( for the factor Mir. s, L.e) defined 1) %,Eq. it.5). which

enters the expression (3.4) fort he radiance furixt ion of a field
where 1"1(r, w,) is the intensity distribution and gtl(r', w) is generated hy a quasi-homogeneous source. For this purpose
the degree of spectral coherence of the light in the source we substitute for Kir - r,., s; Let fromn expression (4.3) into
plane. 115(r, w) is assumed to be a slow function of r. whereas Eq. (3.5) and introduce the iew variables
.'.. r, w) is assumed to be a fast function of r'.

0n substituting from Eq. 13.11 into Eq. (2.12), we obtain = - , (-,.'~ii
Ihe ftollowing expression for the generalized radiance of a p + ':)
quasi-hitim)genle, tis source al tiny point r, in lilt siourcue
plane: One then readily o btains fill, following ex;iressi,in for Atr.

s ' " r,, s ) = 2s r ,. ( (k s , e). (3 .2 ) k. ef:

Here Mir, s; w) 2 d_/,, exp(ihs p.

X .d -J Ir -p J

R11I)(f, e) = MIW Jg ) texp(-if - r~d 2 r' C3. expi-W.r - P1 P .

is the Fourier transform of g""(r'. L). To determine the
generalized radiance of the field at any point r in the half X exp(-ihs Pl .P-1.6
space z > 0 produced by the quasi-homogeneous source, we wf
substitute from Eq. (3.2) into Eq. (2.13) and find that where we have made us4 of tie act that r d = dri d .W~e may express Eq. ..6 inl a more, symmetric fo~rm by

,4,(r, S) = k2s: ... (k.s w)M(r, s; ). (3.1) making list, i it he tact t hat Ilecatlse the source was assuned
we he quasi hnigeicvIli,, I"..p. .'. will cluange slowly with p

where f or h cifeci l ct' \ ii' v y v c I ni'ha 111 rihlites I tll' irce
s t,,''ro l e m }tI'c %%c \1111, lma~ke' Iht alpprovxilluitionll

Mir, s; w) K(r - r,, a; w)I (r,,, w)d r,, 1,1. ',1 4.
. Le .... ll" tP1. 11 ... (l" P:,, will 2 14.71 "

and the kernel K is given by Eq. (2.14). - ,

on the right-hand side of expression (4.6i. The resulting
4. SHORT-WAVELENGTH LIMIT OF THE expression for Mir. s; w) may then le written in the forn
GENERALIZED RADIANCE OF A FIELD
GENERATED BY A QUASI-HOMOGENEOUS M(r. s; , '- Fir s; e)lir s; , 4.4
SOURCE 2r

Let us now consider the behavior of &(r, s) of a field gener- where

ated by a quasi-homogeneous source in the short-wave- " s.xl)(ihr - pl)
length limit, more precisely, in the asymptotic limit as the Fir, s; ,) = f["ip. ' rp
wave number h = 27r/X - -. For this purpose we first
express the Green's function (2.6) in a more explicit form. X expitks P, )(d. (.9f
On carrying out the differentiation we readily find that

The asymptotic approximation to the integral on the
1z= R ] e' n  right halnd side of Eq. 4.91 may he determined hy the use f

(66R, 7=- Rik- R R 1?(4.1) the two -dimensional form of' the principle of statiiinarv

phase.'
' In carrying out the calculatmions we ignore the de-

which, for stefiien fly large , i es if hi?. m ay Ibe alir xi. pendence *t l he source i t nsitV I i"(p. ,) ,Il ', for reaso ns
ated hiy indicated in cintecl ion with the apiproximiliin 14.7). The

ik restilt is
2r R2ri 1.' r. s; , i t ,[,,,p - 1:i's. Is ., ,ff' !txptks rl I,

Next we substitute from expression (.,0 into the expression F

12. II) for the propagation kernel IK(r - r,,, s; ' aid find that when S,,,
%hen% im I. h> 1, wl?he >> 1:

K1 r - r,,, sw h z " R expiks pfdY. as k . where S,, is tIle point ill the sotirce plane z
who)se Imsiti, victorisp-(z/s.ls (sieFig. 21. Onsuhsti

.;t) ilt ing Irom exlpressiii (I. 10) intot expressiio (4 18), we olhit ili
for A r, s; , the ;usylllhptt i i apr,\iinat ion

where
A lr, s: ,f l''jp -- i:. s , w hen S , ,%

R, = r - r,, + p'12, 14.4a) - I whenl .' ; l

R, = r - r - p/2. (4.4h) as h
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Note added in proof: Since this paper was written anoth-
er paper dealing with the foundations oif radionietrv was

so Z published IM. Nieto-Vesperinas. "Classical radiometry and
radiative transfer theory: a short -wavelength limit of a gen -
eral mapping of cross-sped ral densities in second-order co-

Fig. 2. Illustrating the notation relating to the formula (4.14). S', herence theory," .1. Opt. Soc. Amn. A 3, 1354-1359 ( 1986)].
ithe point in the source plane at which the line through the field Unfortunately the main conclusions of that paper are incor-

ploint P' ini the direction of the unit vector a intersects that plane. red tbecauise the analysis contains several errors. Specifical-
TIhe vector p -. 4/.I which appea rs in extpressions (4. 10)), (4.11), lI, the cx press ion (29) of that paper is not t the (Ink lv xpres -

01(1t 4 I:)t. he II st io ~Ct orI I theI (Ii lt ~sion that sat isfies Eq. (27). Ml ire(ver thie ii x equialion (i ii

does not imply that 1(r, 9) is positive definite, as is stated
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Generalized Stokes reciprocity relations for scattering from
dielectric objects of arbitrary shape

Manuel Nieto-Vesperinas

(~~it!~ II')IIIIII (,onsejo Superior (it, lIlt'Istiguciont's Cit-ntifi1s Serrano 121. 011l1 \1III. Spil)II

Emil Wolf

lIt'puriniln o~f P11% SiCs Unli Ast-III1IIm I lii('trsltV Of RIochesier. It,JhI'1t-l .\un Ymu k 14627

The S niatrix is first inltrolduced within the framework of the angular spectrumn representatioln of wave fields
interacting with linear dielectric bodies oIf arbitrary shape. By using some universal properties If the S matrix, a
nulmber oIf relations involving certain generalized reflection and transmissioln coefficients are derived. These
relatiolns may be regarded as generalizations (If two well-known classic reciprllciiv% relaltiolns due tol (. G. Stokes.
Two reciptro city relat ions in~volvinig the reflectin iind the t ransm~issionl co efiicient s for interacti ti a plane I

e~lectroImagn~etic wave with aI stratified dielectric niedillml are olbtainled as5specilal cases.

1. INTRODUCTION wave theoryv. Otir derivation utilizes in a basic wav the

[i tcascpprpbihdi 89 tks eie w concepts (of the angular spectrum representatioln (If wave
In clssi paer ~ullihedin 849 Stkes deiv dw fields and of the S matrix. The combined use (If these two

well- known reciprocity relations involving reflection and cnethsaraypoe rte sfli ramnso
transmission (If light. More specifically, he considered a other p~roblems, whicb vielded interesting results relating to
plane moInochrolmatic wave incident tipon a plane boundary the theopry(Ijatennats'ahi ( tdistortion correction by phase
separating twoI semi-infinite. homogeneous, isotroIpic dielec-

* rIncmedia. Suppose that 0, and 01 are the angles (If incidence conjugatioln." Tlhe generalization of the Stokes relations

and refraction, respectively, when the wave propagates from presented in this paper does not, however, appear to have

* ~~~the first into the second medium, and that r and tare the be bandpeilsy
* corresponding reflection and transmission coefficients.

Next consider the situation when the wave is incident at an 2. SOME GENERAL RELATIONS INVOLVING
angle 0,1' = f0, from the second into the first medium, and let p THE ANGULAR SPECTRUM
and~ r be the corresponding reflectioln nd tran~smissioni (,(let- REPRESENTATION OF WAVE FIELDS AND
ficit-nis. TIhe relatiolns derived by Stokes are THE S MATRIX

rt + r? 1, (1. 1tn) Consider a molnochromatic field, not necessarily a planar

p+ r 0 . (1. 1 b) o~ne, incident upon a dielectric scatterer. We denote by
I 11(r)exp(-iwt) and I !1(r)exp(-iwt) the incident and the

The relations (1.1 were later generalized to somewhat scattered fields, respectively, with r denoting the positio~n
molre complicated sittuations involving stratified media, and vectoIr (If a typical poIint in space, t the time, and w the
theY, have played a tuseful role in oIptics (If thin homogeneotus frequency. The total field U(rtexp(-iwt) is. oIf coutrse. the

*film,..- More recently, relations of this kind have 1) 'come of sum (Ifthese two fields.
imnportance in soIme investigatioIns concerning the cancella- Let its choose a Cartesian-coordinate system of axis 5(1
tilln If dist ort ions by the technique of phase co1njugation.3A that the scatterer is situated within the strip 0 !S z L, and

* All these situatiolns have olne feature in common. They let /?- and /1' I he the twol half-spaces onl thte two side, (If the

lily Ike it homogeneous oIr a sucecessionl (Ifhomogeneous di scalti(rer (set, Fig. I I. It is well known that under verv

I-leo-i rics with inlutuillly parallel plani- boundaries. and. (11(1- gencrill co-lili 1111 iblo toltal field tin each (if' tlle two hall-
-equen t lN when a plane wave is i ncidlent upon st ich a cotifig - spaces ia v hIe r(pre~ent ed in thle fo rm (If al angtular spec -
oirat111(ion lnv title' reflected and IoIte t ranismlitt ed wave is geit- t ru li If II lol' wa ves. - b th ho1111 geneou as and evanescent

c'ratedl. It seems natutral it, inquire whether one can one10s. Ihe amlplitlildes oil the evanlescenlt waves decay' expo-

generalize the Stolkes relations further, sol that they' apply to neni iallY with increasing distatce from the scatterer. Be-

-itu(aililns sutch asM roulgli-surface scattering aild scatteritng elitisewe will be interested only in the field far away fromtile

f ron iti iho(ml gteI ((s plane - parallel d ielect ric- slab Ior to wIsat Itrr we will o tn it thbe c n I ribIu(t ions (If thle evanescenlt

phab~se c(onjgigo (i tf waves tht are scattered fri on a d ielec - wave's. 'I'llhi a, nIn r sp ect rumti r('pres('ntato lollf' the time-
im b od v o f a rbitrary- shape.' In the presenlt pape1r we Ioblta in i ndetpeniden t part I f the t~la~l fielId t hetn takes thle tlllowing

* ~ ~ Il it geneIrallizatttion %it 11( the Iramewllrk oit the %carT form ill the twol half slptcs:

0t740-323t2, S6; 2,201 OS 4~$02.00 c 19K6 Opt icad So'te %,,f~ AtnI-ril
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incoming at infinity, whereas the integrals containing the 4
spectral amnplitudes I)" represent a field that is outgoing atP
inilitv C

We will assume that the scatterer is linear, i.e., that th(-
SCTERR -outgo~ing field dlepends linearl ' on the incoming field. Con-

sequent Iv t he C amplitudes and the 1) amplitudes will be
cou pled iiv a relat ion of the ftorm

z 0 z L Din) -JSin, n')Cmn)dQy. (2.4)
fC

Fig.1. llusratng he ntaton.where C and D are the column vectors

r n)[um
C(n) I = Dn, I( Ma 42. 5t

I () k C 'nc1-d ik D" e'kn-rdQ and S is.o frach patr of argu ncnis n anti n'. a 2 X 2 matrix.
1 4 I -~-J '- nu~dt +*;I21r'd2 Writteii okit more explicitly, Eq. (2.4) gives

t2.1a) 1)"'(W= S (n, n')(' ') d!!'%

(2. 1b)

itI these formulas n - i, n, ?,) are real unit vectors, k? = wkc U - = * S'I in, n')( 'n) d

tihe wave n umbher associated with t he frequency Le (c being
the speed of light in i'acu)). dii is the element of solid angle
generated by the unit vector n, and a" and it' are unit -JS- in, n') C'" (n')di (2.6b)
hemispheres in n space defined as

with
'T I : n l l = >,n, 0. (2.2a) [S"nn~ 51 + 4) n')

1: n 2 = 1, n, < 0. (2.2b)LS'- '(n, n') - 'fn 27

Frttm the significance of the quantities C~t and D11' as
I hie constants multiplying the integrals in Eqs. (2.11 have complex amplitudes of waves that propagate either toward
Ibeen chtten sot as ito simplify subsequent formnulas. tlr away frnm the scatterer, and recalling the definitioins (2.21

InI the represental ion (2.1 ) the factotrs '~ and JI t have of the domains tf integration in Eqs. (2.6), it is clear that the
t he phyvsical significance of (generally ctmplex) amplitudes fttur elements if the 2 x 2 matrix (2.2) are defined only for
of htomogeneous plane waves that propagate in different the following ranges of the z components of the unit vectors
directions either totward the scatterer [waves with ampli- n and n':

1! .it.s (" "and ' - 1 or away* from it jwaves with amplitudes-'nIn) n>. C 0, id 1), - . However, they also have another physical S" l N) i ).,.>0 2.8a)
-±:'iiticance. which becomes evident when) tne examines the In n'):l n. > tI, n.'- < 0, (.b
bthtitt ir if the total field far away frotm the scatterer. One
1 1 i fi nds. fotr exam ple by the use ot the principle of statittn- ---

;ir% phase.' that as the distance r of the field potint from the C, U) I- tU)

ixt- c Ir jiin I in the sou Ircet reg io n i ncreases lltng iany fi xed
irection specified bY any real unit vector u . W" ,,, U ZJ,

I 'iru) ~- 'I - u) + I *I(U) e as hr =
r r

(2.3)

hd-re the tipper ttr the lower signs are taken ito the right-
SCAITERER

ind sidle accotrding to whether the field point r = ru is
I s(ated in the half-space ' or R? - i.e.. accord ing to whether

. or (itro < 0.
The fotrmulai 12.31 expresses the far field in eac-h oft the two

hallf spnies )t eit her side tit* the scittlerer its it sunt of' a
-n~ergtng and it diverging split-rictil wave, with ctoplex
rtmpIi odes C' " ad /)" (see Fig. 2). Ihi.s result implies
h it the Integrals in Eqs. 42 1 ) that contain the (genierally tig. 2 ''it(- tmr tit-Ids in (tie hallt pmt' v, li - anrd le on either ide ot

-:~h~ispectral amplitudes C' :I-pres( nt at field that IS the siititert-r
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' 'n, n'): n <0 .a.' > 0, (2.8c) 2 7Tn, 2.15a

S'- "n. n'): n: < 0, n.' < 0. (2.8d) --

It will be useful at this point to make a contact with the /,',,(n) = - 27r Atn + n,,.
uual matrix of ptential sattering. In te thery ofk

potential scattering the expression for the far field, which
torrespondls toexpression (2.3), would he written in the tirm 3. THE GENERALIZED TRANSMISSION AND

REFLECTION COEFFICIENTS

I 'ru) - 'lu) + A.,F(u) askr (2.9) We will nowshow that the'four elementsoftheparlitioned.-
imatrix that we introdced through Eqs. (2.; have a simple --t

andi one expresses the relation between the complex ampli- interltretation.
titles if tlhe outgoing and incoming waves in the following Suppose thai a niontothronalic Illane wave of unit aiili-
'rm, which correspo nds to Eq. (2.4): tude and directini at pripagatiin specified lv a real unit

vector nl1, i.e.,
k,'In) = - X(n, n')F(-n')dS1', (2.10) r.

I "'(r) = ,,n,.r 
(:.)

where the integration extends tver the whtle unit sphere .
'neraled liY the unit vector n' 1cf. Ref. 11, Eqs. (20) and [with time periodic factor exp(-twlt) not shotwn], is incident
1l )l. upon the scatterer. It then fohlws from Eqs. (2.15). (2.9),

It is clear that X'n. n') and S4(n, n') are essentially the and (2.8) that
samne quantities, hoth being continuous matrices whose ele- (" n = - 27r - nt,). (3.2a) A-P

ments are labeled by pairs of real unit vectors n and n'. n i AIn

Hiowever, in contrast with A'(n. n'). each element of S(n, n') 0
is itself a matrix, arlsing from the partition of 'X~n. n') into
foor separate tontrihutii ins J Eqs. (2.7)). Such partition is D" 1(n) 2 'Wn, n"). (3.2b) .-
advantageous when the field in each tf the two half-spaces i%
If and /fI is represented in the form tf an angular spec-
trum (f plane waves. the upper or liwer signs being taken ton tie left-hand sides of

For later purposes we recall some general l)rolerties of the these formulas according ti whether ri, .: 04. Now the second .

usti a scattering tiafrix ,V(n, n' it is well known that when integral it the right hand sides of Eqs. (2. 1) represents the
the scatterer is dielectric (i.e., lssless), X is unitary, i.e., it titigoing field. I ""1(r; n,,) say. i.e., the field that behaves as at

iieys the relations lcf. Ref. 11. Eqs. (24) and (29)1 diverging spherical wave at infinity. Hence it tollows, tin
making use tf Eq. (3.2b), that when the plane wave given by

j I"tn. n')A'(n, n"dl = Wn' - n"), (2.1 a) Eq. (3.1) is incident uptn the scattering tbject %

I P""(r; n,, = f A '(n, n,,)enrdlZ when r I R (3.3a)/to

InSMn', n)'*(n", n)dtl = A(n' - n"), (2.11)

where the asterisk denotes the complex conjugate and the = *.n, n,,","odS2 when r (3.3b)

integrations extend over the unit sphere generated by the
unit vector n Further. A(n' - n") is the "spherical" I)irac where at  and a1 ' are tile hemispleres defined v Eqs. ".-
delta lu ncution, defined ibv the formula (2.2). S

6(,' - 0")Alv" - T'") The formulas (3.3) represent the ou tgioing f'ield ill each of '
Ain' - n") = i t" ' (2.12) the twi hall spaces i; aIod /,' in tlte fIirtn of an angular .,

Isitt 111
spectrum Itt plane wave's, witl (gentraly nilex) aitlpli-

where t0%.r') and " art the spherical polar orinates tudes .Sin. n,,) ItlIt iropagate awa friom the statte rir itt
if Ihe tnit vectors n' and n", respectivelv. and h is itie usual directions sltIii, u'tl Ib\ oli veilctor., n. Whei tht' *" t, -t to
one (Id inlt.noto al Dirac' dehal function, ntent, t of.. thet unit p~rolpagatio~n vetohr n,, of' th ilt ~ ident %'

The A matrix alsto oiieys the recipr iity relation [Ref. II, wave is I)tsitiv' -% tIn, n,, learlv hats tht ph'si'al signtitit'ance

Ri1  1_28u[ ii a gi-ri'rlt.hid trtart , .iv,,,ti ,,i'/fia',it(. (In, n,,) sax, when= 1t. o4 and t a t ''tttl:rid ri'ft'lci o i,,lai-rt,'. rin. n,,t N.Pr
X(-n'. - nlt = 4in, n'). 42.1:3) say, when n. < 1),/,,r imdvihimt' the, t l at/.s 'r I4 (see

Fig. :3). Iecalling tx|pre.sit ts (2.8a) and 1'2.Sh)t. we stu thai -='
We show in Appendix It that when the incident field i it theset' teftictients art ;ret' is .lv\ iwo (I Oilt t'l'mentts t t illt.

plane wave. partititned .1 mat rix 12.'. vi7.. "

f""lr)=,' '"'  ~ ~(n, ).2..)t n n,) . '" nn,,. 11. >t ,,> (1 0:..4a) "

the tat-trs , and V, in the atsvtplitit approximation 2.9)
,f li total field I incident + statteredf) are given iy r(n, n,, " '(n, n,t. I (P it. ,, > 01. 1Ih.t
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formulate certain generalized Stokes relations. For this
purpose we first separate in the integral that expresses the

( } ( Iunitary condition (2.11 Ia) of '(in. n') the contributions from
the hemispheres a(- and (7('. defined by Eqs. (2.2):

t (n, n,,) S''In. n,, ptn~n, S *"n~n0) f A(n. ni'X(n. n")dU + J X*(n, n').V(n. ni"tdt

fl 0  If we chose the unit vectors n' and n" to have positive
components, i.e., i..> 0 and if.." > t0, and recall the physical

r(fl~fl) S' '(nn.) rinni). - S(l~o significance ofv~(n, n') andNA(n, n") discussed in Section ).

we obtain at once from Eq. (4.1) the following relation:
z

Fig. 3. tllustrating the significance of the etements of the parti- r*(n, n')r(n, n")diZ + *nn'triW
tioniit S matrix as generalized transmission and reflection coeffi. -l f tt.f~l

cleflt,
=A(In' - n"). (.4.2a)

Simiarl th quntiiesNext let us choose the unit vectors nWand n" with n! K'<((and

Simiarl th quntiiesn," > 0. rhe formula (4.1) then gives, if we also use Eqs.

r In, n,,) S' -(n. ni). n., < 0, na. < 0, (3.410)-

pi(ii n,) S" " (n, n,,). n, > 0, i, < 0 (3.4d) J * (n, n')r(n. ni")dl + j (i n. n')t (n. n"Wil = 0.

ha% v Iie phYsical significance oft e n crlized tr ansmi ssi on (4.21))
-r/li wilt and a ieTo-rli ced reflectio n coe fficient respec- In it siia - eoti ihtecoc '>0 ,

l./,,I- Iic idill. from the;2 haI s 4 It I (see Fi-g. asmlrwa eotinwt h iiae' >( .<(

.111( refLct ion coefficients, the pairtit ioned S matrix (2.7) r (n, it') r(n, In"W)d? + t*n r')p'n n"'d = 0(.

nav lie expressed in the form (.c

S"I [r(n. n') cm. n' (3.5) and, with the choice n,' <0, n.." < 0.

It I, to he noted that in view of the relation (2.13l), the f *n n')T~. ~ n")dtQ + p*(fl, 0)(n, it" (d
generailized transmission and reflect ion coefficients obey the f".t'

rc prti itY relatIion~s = A(fl - n")I. (4.2d)

I( -n', - n) r (nt nt'). (3-6a) One can readily verify that the four relations (4.2) are

n', - n) I M n')~ . t3.6b) equivalent to the following matrix equation, which expresses
(le unitarity co(ndit ion (2.11 a) in terms if our partitioned S

id n'. - n) Il i n. In'). (3.60) matrix in a familiar form:

r(-nl. - nt) =r(n. nt'). (3.6d) f; i~n, n')S(n, n ") d 1 = 1A (n' - nt'). 14.3)

1: .- ienis worthw ile to pointt out t hat ou r defin itIion oft t
o ,r;iycIlII-( I raiIIIn mi ss i((I, )i nd r et11ec t i onI coefIti c ievntIs de pe n ds Here St is the Hermit ian ad joint (if S and I is the identity

i il hchue if the :- axis. It is poissibile for i transmission niatrinx.
t initit detinci with respect to a particular - direction toe IIn a simiilar manner that led to thle relation4 t(1.2) one canII
Iwcoiii a rtlecti ttic ienmt . a ni vice versa, when the z de'rive frin the seconitd uii ita ri t vci 1(1it iin (2.111 t'Xn n')f tit*i

ircti iii I, che stc iifti'ren Ivlii Howeve r, in mnain situta - thi' flohw ing tour relat ions:
ii, ofi lrict iia initerest aI partic.uflar dlire'ctioen is ilistin-
.iihd front .111 other directions. anid it is then natural to Mn'. nttp'(tl . nidtl + t((nt. nIt(n "t. InlId I?

th'.Ite - axis ciing this special dhirect ion. Examples 11 ''

iii Iidc trat ititid iic'ia. inhieme geiteomis plane -parallel A.~n' 1-n,).4a)
'III'.,eie rieghje.i.-r iit~ii.Sce-i iriitgfrom bodie . f

ar rr, sliat in the pie'nce if planar ;ehase-conjtigate i-In. ip I(n'" n)&! + rHn . n~t*(n". n)(ii? 0l.
oirnr'r '~ t. he-luig'. III !Itti cati'giirv JJ

4. GENERALIZED STOKES RELATIONS ,( . t(" r)1 inrr'n', n)(t = 0
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rtn'. n)l*in", n)d1 4 I rtn', n)r*(n", n)dil chromatic electroniagietic wave with a stratifiid deliI ric
I, 'J, ,, Ilu'I-ditinl,

Cousider i 4 ratifI led d ielec I ric med ini t hail occl pies I he
= A(n' - n"). (4.4d) strip 0 < z !S 1,, and let N = N(z) be the (real) refractive-

The relations (4.4) may readily be shown to be equivalent index function of the medium. We assume that the strati-
to the following matrix equation, which expresses the second fied medium is surrounded by free space; hence N(:) = I
unitary condition (2.1b) in terms of our partitioned S ma- when z < 0 and when z > L. We assume further that the
trix: incident electromagnetic wave is linearly polarized, with its

electric field either in the plane of incidence (TNM wave) or
SS(n', n)St, nldiZ =IA(n', n'). (4.5) perpendicular to it (TE wave). As is well known lJef. 12.

Sec. 1.6.11 the state of polarization of either of these two
The formulas (4.2) and (4.4) may be regarded as general- waves (modes) does not change on interaction with the strat-

izations of the Stokes reciprocity relations (1.1). We verify ified medium; and an incident wave of any state of polariza- 0o
in Section 5 that they reduce to Eqs. (1.1) in the special case tion may be expressed as a linear combination of these two
considered by Stokes. modes, which, moreover, are independent of each other

Of the eight relations (4.2) and (4.4) only two are actually when they interact with the stratified medium.
independent of each other. To see this let us first apply the
reciprocity relations (3.6a) and (3.6c) to Eq. (4.4a) and take A. Consequences of Eq. (4.2a)
the complex conjugate of the resulting equation. This gives Suppose first that the wave is incident upon the stratified

medium from the half-space z < 0, in a direction specified by %
j *(-n, - n')p(-n, - n")dQ a unit vector n'(n' > 0), and let n,(n') and n,(n') be the unit

vectors in the direction of propagation of the reflected and
the transmitted waves, respectively [Fig. 4(a)J. 'he func-.-"-

+ r* (-n, - n')T(-n, - n")dcl = A(n' - n"). (4.6) tional dependences of n, and of n, on n' aregiven by the laws
of reflection and refraction, respectively, for stratified media
(Ref. 12, Secs. 1.6.1 and 1.6.:). Since there is only one

If we - -n", the relation (4.6) becomes reflected and one transmitted plane wave, the generalized
ant " -reflection and transmission coelficients will evidently he ofthe form" "

j *in, n')p(n, n")dlZ + J r*(n, n')r(n, n")dll t -)

r(n, n') r(n')Aln - nr(n')) (5.1a)

= (n' - n"), (4.7) and 0
which is the relation (4.2d). In a strictly similar manner one t(n, n') i(n')A n - n,(n')[, (5.1 b)
can show, with the help of the reciprocity relations (3.6), that
Eqs. (4.4b), (4.4c), and (4.4d) are equivalent to Eqs. (4.2c), where r and t are the usual reflection and transmission coef- -

14.2b), and (4.2a), respectively. Hence if we take the reci-
proc-ity relations (3.6) into account, the set of the four equa-
tions (4.2) contains the same information as the set (4.4).
We may, therfore, confine our attention from now on to the
set (4.2) only.

Since the two half-spaces 'If- and R1 play the same role in %
the present theory, it is clear that from any of the generalized
Stokes relations that we just derived one will obtain a valid L - Zrelation through the simultaneous transformations

T + - -(4.8a)

t -- r, (4.8h)

1' r. (4.8c)
(a)

Two formulas that transform into each other in this way may
lie said to he dual of each other. Clearly Eqs. (4.2a) and
(4.2d) form a dual pair, and so do Eqs. (4.2b) and (4.2c).
Hence there are essentially only two independent relations -.

of the type that we are considering, which we may take to he ,I Nt,, N- I
Eqs. (4.2a) and (4.2h). The other six relations may he oh f).
tained from them by the use of reciprocity and doality.

5. AN EXAMPLE: STOKES RELATIONS FOR
STRATIFIED DIELECTRIC MEDIA J" .
SURROUNDED BY FREE SPACE i b)

We will illustrate the use of the general relations (4.2a) and Fig, . Ilht nhimiiig ith ootai n relat 11W to the d.rivation ,t th, V,
11.21)) by applying t hem to t he interaction of a plane mono Stokes relit , m, hr St trat if i ec I iiheut ni media %
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!I tns, respeciivelv fo r iniden'e for the hi If- sp)'e z < . Sof-c . 4 i,' Ihe incident
LI Ill lIn~ider the first term on the lel hand sitiv oi !hc wit).t ;,r, 1) r ii t .,e direct ion
giiiirali'ed Stokes relat ion 14.2a). It we use E'q. 05. hi) we sp"(dicel I .I'l. :.. , Ad have, by

r~in. n iin fllk)(O Ii if fII - fln it I 15.l1Uoi)

I V II - . ' .k 1, .'' il :, 1 .JIl4)f i t ( I,

I and~) 10, ", rrn i ' ") be t he sjht'rriil a I lirngles II if -- I r. iiIn I,- I I t i. : I"I I r,. ; ' I taois (, tli

.!III %lr n. ni'. and ni", with the poiar axis being tAkc-i rvl'I~t-, hi , j_1 itI, . .*.- ~ h maY hie

;ht p).ir1ive zdirection. [hen we have, according tot dt'terfl~ir 1 1, it 'I. . .- . respie(-

,ti I ,'- l~t r, nI 7r-

'-iratiied nIivdia [H, 1 . ! -w. 1I F; I- i % eJts at , 11212k
Ti n I n. i. anti I I it I t I, I l~it iii

I~f (41 . -i -1 n1niA, n(1)d'! (5.Il4)i-n ,60(.1

.it';rald ,it t fe right -hatnd side inay he eval uated at onice-
d II). (I C. Append ix C(ant It'. I m hat uI, <) U. i- woi- i Il ' iiil lh trlTk!1 n, l ii(n n

ri-dirat 11 I 't l - t 0.Ii , 1. I 1I c n'1 lt a k '

_ n - nin Ii Q jfl - nfIn l)liJ! = 31n,in' - l( ")

'III it1 IIj Io I1 1 ' t

- nm r - nl- deIIa iii- rfiil (i.11 .1 .' o, .- f''1Jflt- tntr'lis'TTTS-

-:ll FA ll- iI -l, -Iij'rlt~i

: I .i Ii (Ill

_ n -Il iiifln -Iin i & : .. ~lil tII

1).~~~1 '1 Ifl n.'. PIn Im l i

i l I Ii.. !i (5.1j)I vI obtain

tr,,m it C '6 rii- I i i i;I ii iii' t i tat 1, 11 1' I I I~ Ii k, no n i tt

b i-...".,. . . .... .. < 1i I
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r * n, n')rtn, n"WdL a(n) = ur dK Vo(rk' KuIrdir. (A:3)

-r (, or - or he asymptotic behavior of' V(ru) as hr in the direc-
T*~~" s in W1(.)adfrua 21 r oeht oedrclfo (5.17) tion of areal unit vector u may le obtained by the use of Eqs.

lIt a similar way one may evaluate the second integral on mathematical lemima due to Jones.ii Thel result is
the right -hand side of* Eq. (5.16). also making use of the fact 2~ r

that with n' - 0(1'. kr'). n,,(n') = I ir - 0i',qf'1. One then readily Vfru) - 2 au) n(- uI j ais kr ( . A4)1b
finds that L or rj

Let us now apply Ithese results to the case when VWr is a
p*(n n')~n, "Wilplane wave ((I unit' amplitutde that plropagates in the direc-

tion of' a unit vector n,,:

sin'n" h"I + W(a.7h18)- VWe (A5

Isill 01lo determine the angular spect rumn amplitude function a(n)

On substitti ng f'rom Eqs. (5.17) and (5.18) into the general- of this field we first note that, when V(r) is given by Eq. 1A5),
iiz'd Stokes reltat ion (4.21)), int egrating bo th sides of' the the F ourier I ra ushrin that aIppea rs in Eq. A:t) b ecomnes
equation o% er the unit sphere generated by the unit vector n' xpiJn l'

4,v',and making uise of 'EAl. (5.3), we find that jV(Ot rh' (1r v=~~ , - 1n) rdr

r*(nr"')r) n" + p* (r" )1(n") = t0, (5.19) (2,r )AMI:"tno - Kn), (A6)

where ni," nrn") is the uinit vector along the direction of where h1:11 is, of' course. the three-dimensional D~irac delta
the reflected wave when the incident wave p~ropagates in the f'u n(t it n. On su bst itouting from Eq. I Ah into Eq. (A:) we
direct it specitied by the unit vector n" (n,~" > 0). find t haw (n) is nlow given by the f*ormu Ia

If' in EqI. (5.19) we make use of the reciprocity relation
1 .01 andI write n' in p~lac'e of* n", we obtain the formula a(n) = k 2 

fil j t "(hn,, -KnWdK. (A7)

t(1-n,')r(n') + p)*(fl,')i(n') = t0. (5.20)
To evaluate the integral onl the right-hand side of Eq. WA)

Tlhere are other forms in which the relations (5.19) and we make use of the representation of the three-dimensional
(5.20)) canli le expressed. For example, since the unit vectors D~irac delta function lin spherical polar coordinates."~ One
nl' ami(l -nri make the same angle with the z axis. t(-l,') then finds at once that
tNn't. For the same reason p(n,') = pt-n'). Making use of
these relations in Eq. (5.2(t), we obtain the formula h''"(kn,, - Kn) = I t/k')A(n - ri)"'(k - K), (A8)

where A is detined by Eq. (2.12) and hik - K) is the one-
+ tn')*(i~) 0. (5.1) dimnensionial l)irac delta funcitioni. On substituting from Eq.

TIhis f'ormula is another .Stokes relation for stratified di('lec- (A8) into Eq. (A7) and carrying out the trivial integration
tric me'dia and is (of a fi'rm well known in the theory of with respect to K. we find that the angular spectrum ampli-
dielectric films (Rtet. 2, p. 173). t ode funiction oflie plane -wave field is s imply

I'lbe re lations (5.21) and (5.1. 5) recently played an i inpor-
lant ride- in t he' t e tryv(of' correction of' distort ions by the n)=An-n)IM)
techniqume (Ifphase (tonjugatiton.1 Finally, onl substituting f'rom Eqs. (AS) and (A9) into the

asymp~totic formula (A4) we obtain the t~ormal asymptti c

APPENDIX A: DERIVATION OF A FORMAL approximnationi
ASYMPTOTIC APPROXIMATION
Webei bow recalling that under very general condIitions anly )7kit[,.r - r~ r~ +jo)isk

begin fl r orD + ) I asK
soluition V00). valid throughout the whole sm-ace, oif the (A1)

e eiihl p~~~ltionl

It is (of* int erest tow oit t 'the f tri o fthe angular spect rum o
0 AI relreseiltat imi0 of a pIanle wave. It is clear oii (((omparing tile

mayO he extpressedl in) the formv oI anm angular spectri tf' right hand siles tof Eqis. (A tlt and (2.3) that f'or the tdaile
homogeetthm plnewavs, llwith the samte wave itinaiberk K. wi'. difiited hv Eq. (AfII

thait jtrttpmgate iii all pttssibldidrecf amns' :'__ fl- ).At.l

V,') t ntfl)(.kn r(1$ (A2)

Th lco t mpIlex spectral ampl1tIit i (( hi mct iol (1(n canl he de J~ ~ ~A(n - n,) . (Ali1b0
rn'il frtm it, h kioltwedg gottf* IIr ) by lt( einve rsiton form u h
116.t I :t, Ft 1 Oil 1)1 Oi tamking in ( Eq. 2.1) 1' r expohm'n, - H antI on subhs) it
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ing for the C and D coefficients the expressions (A 11), we F 2(n) = 2rn, no). (16)
find that ik

In R : The formulas (B61 and (B4b) are Eqs. (2.15) of the text.
e = f_. __ t

ek11r J + A(n - 0)eku.d 2' APPENDIX C: DERIVATION OF THE

(Al2a) FORMULA f41r A(n - n'l)Nn - n")dfl = Aln' - n")
We have, according to the definition (2.12) of the "spherical"

In "f+ Dirac delta function

" .1(n in,,," l I(n -- )n - n') W 1)

Ism 01
(Al2b) where (0, i) and (6', ') are the spherical polar angles of the

One can verify by direct evaluations of the integrals on the unit vectors n and n', respectively. We have a similar ex-
right-hand sides of these equations that these formulas hold pression for A(n - n"). Hence it follows that

l I ][ill 6(0 - 0166(; - %P'Wo 0"Mip€ - or")
I A(n - n')A(n - ndil 6 -.. ... (sin 61 sin Odfd;. (W2)

J14,I sain I1 A~ s0 6

throughout a wider domain than indicated here; in fact, each Now for 0 < 0 _< ir. Isin 01 = sin 0, and Eq. (C2) therefore
of the two Eqs. (A12) is a valid representation of the plane reduces to
wave exp(-ikno • r) throughout the whole space.

APPENDIX B: DERIVATION OFA(n - n')A(n - n")dFO 6MU0A - fl 46( - 0")&

(2.15) 2,

X m5( - e-w)6( - 5-Id~r. (C'3)
Suppose that the field incident upon the scatterer is a plane itd
wave of unit amplitude that propagates in the direction of a
unit vector n0 : By an elementary property of the Dirac delta function IRef.

12, App. IV, Eq. (12)] the first integral on the right -hand side
11"(r) = e' n''. (B1) is equal to 4 t0' - 0") and the second to h(." - p"). Using

these facts, Eq. (C2) reduces to
The total field (incident + scattered) in the far zone is given
by a formula of the form ( f n - n')n - n 60d , = - 0")h(r' . (C4)

,.kr
C'(rn) - c 'kn- + A(n, n.) e- as kr - (132)

r or, recalling again the definition of the "spherical" Dirac

delta function lsee Eq. (C1),

whore A(n, nd) is the scattering amplitude. If we substitute

in Eq. (12) for exp(ikn0 , - r) its formal asymptotic approxi- I A(n - n')A(n - n")dtl = A(n' - n"). (C)
mation given by formula (A10), the expression (B2) for I

1'(rn) acquires the form (2.9), viz.,

)--k +F) , -ACKNOWLEDGMENTSI 1(rn) - F, (n) - + &.(n) c_. as kr ,(133)
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dation and the U.S. Air Force Geophysics Laboratory under

where AFOSR Task 2310G1.
Fin) 2r, A(n no) + At(, n) (B4a) We are indebted to J. T. Foley for some helpful sugges-

tions relating to the calculations in Section 5.

Emil Wolf is also with the Institute of Optics. University

F,tn) = -ik A(n + n,,). (B4b) of Rochester. .

The expression (B4a) may readily be expressed in terms of REFERENCES AND NOTES
t, 1% matrix. Tot do so. we subst it ute from Eqs. (04) into
h,- foirmula 2. 10) lhat nay )e regarded as a definition of the I . G.C Stikes. Cimhridg, lihn Math I 4, 1 (15.191 Reprint
matrix. We then find, after trivial cailculat ion, that ed in 't, ad I'h .,i'al Papers if G (;. St,,kes Warm

bridge I, Press. Cambridge. 18:4), Vol. II, pp. 8$9 103 For

modern trenltenlN tit the St,,kes relations see, for example. F.
2n. n) = .(n. n,) - 1(n -- n,,). (B5) A. Jenkins and H. E. White. Fundamctalhof (ptics. 4th ed,
ik (McGraw-Hill, New York. 1976). pp. 286 288. or E Hecht and

A. Z.ajac. optic., Addison-Wesl|ey. Reading. Mass.. 19741. pp
On comparing Eqs. (B5) and (B4atl we see at once that A. ,:,
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Radiance theorem with partially coherent light
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Abstract. The transmission of a generalized radiance across a planar boundary
separating two homogeneous media is considered. It is assumed that the optical
field remains continuous at the interface and reflection is neglected. A result is
obtained which may be regarded as a generalization of the conventional radiance
theorem for fields of any state of coherence. This result differs from the
conventional theorem by a factor that depends, in general, both on the optical
intensity and on the degree of coherence of the field. However, over a wide range
of circumstances the generalized radiance theorem is shown to be in good
agreement with the conventional theorem.

7V

4%

1. Introduction
One of the basic principles of conventional radiometry [1] is the so-called

radiance (or brightness) theorem that pertains, in its most general form, to the
relationship between the radiance of an object and the radiance of its image formed 0
by any specular optical system.t Within the framework of linear theory, an
arbitrarily complicated specular optical system may be considered simply as being
composed of a sequence of Uniform media separated by sharp boundaries. The
conventional radiance theorem then follows directly from the phenomenological
laws that govern the transmission of the radiance through a uniform medium and
across a boundary separating two uniform media with different indices of refraction. 0

The propagation of the conventional radiance is governed, under general
circumstances, by the equation of radiative transfer ([21, chapter I , equation (47)). It
implies that in a uniforn, medium (that does not contain sources or absorbers) the
radiance function U,,,(r, s) at some frequency v), measured in the direction specified %
by the unit vector S, remains invariant on the line in the direction s through the point ,P

represented by the vector r. In a number of recent publications (see, for example,
[3 8], the validity of the equation of radiativc fransfr has been investigated in a
(statistically) honmogeneous medium vith scalar tields of arbitrary statcs of
coherence. The discussion has also been 'xtenoed into the drmnain of e lectro-
magnetic fields both within the frame\ork of'classical 19 . 101 and tLI antized [I I, 121
wave theories.

t A specular optical system iti this context is one thl does noIt cotaill diffusel'
transmitting (or reflecting) surfaces.

.-. --. . . . .. . .. .. ... . . . .. ... .. . _ . -. .. . . . . ....S% %, .... %
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1370 A. T. Friberg

The transformation of the radiaince across a sharp boundary has, however, Of
received considerably less attention. Although the reflection and refraction of wave
fields at boundaries have been extensively Studied, no work is known to the author

that deals specifically with the transmission of the radiance associated with a

concentrate in this papler on examining the conventional radiance theoremn and its
range of validity with partially coherent light at a single planar boundary between
two homogeneous media.

In the present paper we will adopt a relatively simple and straightforward
approach that is based on the scalar theory of light. The fundamental assumption, ats
is customary in physical optics, is that the (monochromatic) optical field remains

continulous across the interface. Nonetheless, the method employed takes into
account some interesting physical phenomena SUch as the conversion oif evanescent
waves5 into propagating plane waves. Mloreover, it oilers several valable cities to a

future improvement of the analysis.

2. Radiance theorem of conventional radiometry
We begin by briefly recalling the phenomenological form of the radlintc theorem 0

as it is traditionally encountered inraidiometry. Conventional radiomctr\ a with
the problem of energy transport at somne temporal frequency wt. With referelicc to -

figure I , the conventional radiance theorem at a single refracting surface mnay he
expressed in the form LI 4]

B, (r, s,) B2 (r, S2)
2 12(I

where 1I, and Bl, 'arethe alue Is oilthe radiance on the two sides of the interface (the
explicit (1) dependence is omnitted). Pi and n 2 are the refractive indices of the two
uniform media, and r deiiotes the position vector of art element da (if the boundary.

Further, it is important to note that in) the conventional radiance theorem (1) S, and
S 2 are unit vectors that specify the path of a geometrical light ray across the surface
element. Tlhe effects of'reflection have been neglected in the derivation of equation

0I).

S2S

Sd9
lFiviirt 1. Illustrtilon ofil iho notation relating to the radiance theoremi of t-i,ii% entiollil

rad tomeiv. 
0

'I he p ropagatain i~i gto il, zed rad iante fli t tiS (tOht pertain to fields oft ain state it
c-oherene)~ lit lenis svstenis has biceti ;iithed l i [4] ;turf [s I otl toe 1sis Of thet risilil FIuit-e
.ipti, . ppromiiiations. A-lso, t raither senri-al (onc -dit f .- tisiiinall nal vsis, ofthe propagation of'
it kgetie no Ii z d ro moi- thro mugh lot sos %% as p resun ted in [1.1 3] naking 1set. a isvilpi iii

a opxilillt~iio l~m-oinioip oal optit-, limilt) base.d on the priniciple of th ttoaypliose
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The radiance theorem (1) of conventional radiometry expresses merely the
conservation of energy (at frequency (o) that is incident on the element of drT from the
differential solid angle dill around the direction sl and emerges into the differential
solid angle dK12 around the direction S2 (see figure I). Therefore, it is clear that in
connection with the conventional radiance theorem, the size and direction of the
clement dQ 2 are directly determined by dQ, through Snell's law of refraction.

The losses due to reflection could be included in the conventional radiance
theorem (1) by introducing a phe'nomenological coefficient of reflection that depends
on both position and direction. Formally this would involVe the use of the differential
scattering coefficient ([2], chapter 1, § 3) that appears in the conventional equation of
radiative transfer. Approximate values for the reflection coellicient could be
obtained, for example, from measurements or from the customary Fresnel equations
(see, for example, [15]).

3. Generalized radiance and the radiance theorem with light of any state
of coherence

In the context of fluctuating optical fields, geometrical optics cannot be used to
couple the energy transport on the two sides of the boundary. For this reason we wil lI
make the assumptions, common in physical optics [16], that the optical field remains
continuous in passing across the boundary surface and that on the surface it is given
simply by the incident field. These assumptions are the cornerstones of the
customary analysis of scalar-wave propagation in optical systems, where the various
elements such as lenses are represented by complex-amplitude transmission
functions. Clearly, the assumed field properties then also imply that reflection at the
interface has been neglected.t Since the continuity holds for each realization of the
statistical ensemble (assumed to be stationary), the cross-spectral density function
[18] IV(r, r2 ) that characterizes the spatial coherence properties of the field at
frequency (t, will also be continuous across the boundary.

For the sake of simplicity, we take the refracting surface separating the two

homogeneous media to be a plane z = constant, say z = z 0 , and consider a wavefield
propagating across the boundary into the half-space z > z0 (figure 2). We may
then associate with the field distribution in any transverse plane z = constant a
generalized radiance function defined by the expression+ ([19], equation (21))

11(p,s )S (k 2t)2 cos 0!1'(p i I '2p', p 1, 2p')exp( iks 'p)d 2 p', (2) -

" here |' (p + I/2p', p - 2p') denotes the cross-spectral density (at frequency (o) of,
the light at the points p,' = p + I/2p' and P2 = p-- 1/2p' in that plane, and

k - nko = n(oc), (3)

t Iln scalal r optl.s mt sonict lies requires thai hoth the opfical field and its normal
derivatl v remain coni iuous across a sharp boundary. 'l'hese boundary conditions then givei
i iSc also to a rclfected field com ponen t. Il particular, \\ ith a planar Io in dar\ and an incident
plane wave, the resulting coefficients for reflectiiin and refraction are the usual Fresnel
,quations for the case \hen the electric field is perpendicular to the plane of' incidence
i conipare, for example, [17], equations (5) and (6), and [1 5], equations (4.34) and (4.35)).

iSiice tit' (" irttslai ci iponot s .i ,, i" lld s. o] ill" t111nit \ tctor S art related b\ the idctI i S1
+ C I, onil\ t\ o of the three components are indepeldellt. We \% ill, therefore. rctim d

le i"'liralized radliatce as heing, in its directional dependence, llUtioll il the I\\"-
limciisiunal transverse \ector S, (s, ,s, ) anid denote the radianc 1w lth\ S, .

67

= ='=~~ ~ ~~~~ - - 0i N - ' ''# m•,--•e



1372 .4. 7'. Friberg

with n being, the refracti'e index of the medium and c thi spieult'lc tl , .,.it jIr
Further, in equation (2), 0 denotes the angle between rii, I,.il %11";f r , '.A., ti'
positive zaxis and s is the projection ofs (consiiivied I, I I -d.. , .i r
< n llh thl' j')L jlilt , :- tI LM 1-1,111t, i.t' It S I I,, , I I t b I I, ' ,l ,
Finally the wint r iorfn i t (u i 2 ' Itut' thrl u'rl 'I (l ..it ' i' -

= COnstant.

I

medium 1 I ,

(n)(n)

+
I ,

-I I

z (
ligure 2. A planar bondary z Z. scparating t\xi h( ti h %%'ith I' mi i I e

indices )i ,n4 n2, rtcsp.cti\A \lv.

For later analhsis it will be convenient to introducc an ;a '\Ii.,rN ,Ujtlrv, k no\\ n
as the Wigner (distribution) function [20], that is closel. reli I t 1 " 111 ifler; "i
definition of the generalized radiance given in eqiloti ni (2 1. -1 . ili t 1 s 1' ' t

function by the formula

P(P,f)-- Wy + l12p',p- I/ 2p')cxp -ifp ,'

\\here f is a (real) twvo-dir iensional vector. An analOgOu., q,+:iniiil. )h' fl , Ite

identified [21] in some sense with the 'local spatial-frequency sL t .,i , I tI . it it
has been studied extensively by lBastiaans [22,231 in gJctritcl 1c ;,,t
physical optics.

)n comparing eqiatiins (2) ;ind (4), we se at onc, 11e

Pt . s I Ib 2 , (I 0 IS

a relation which is valid in any transerse plane - ,:l. . \,. , 1. .

particular, two planes displaced by a small distance i; ftw, 1j' ItI,' ,iI-

media I (refractive index Ptn ) and 2 (index ?2 ), and lert .' t. Ii I Ii. .I ,.

tunctions in these planes by subscripts - and f . fv :, i, i\ , I ip.5., li' , Ii
ust of the facts that there are no backward-pro aigaug , , ii-ii I,, it 41, t -1i
and that the cross-spect ral density function Il' p,, p, ) ret ii i , ,lt h ,i Is , ii- i

boundary, we thtn obtain, in the limit as 1: *1), :from ,,, it, : (1) lit It, ,

/€, (p. $2 + ) tn i ( 2,tt)2,1 (p; S, , S, , i t" b i,

c<s 2 X p. k, S
.I(p;S, ,S, = - '

COV 01
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Radiance theorem 7with partially coherent light 1373

In this expression, k, = nIk, and k2 = n2k o with k0 = w/c, as before, and 0, and 02 are

the angles that the directions S1 and S2 make with the positive z axis.
Formula (6) may now he regarded as a generalization (at a planar boundary) of the

conventional radiance theorem (1) for optical wavefields of any state of coherence. it
is, in essence, an identity that follows directly from the basic assumptions of physical
optics. Comparison of equations (1) and (6) reveals that the new relation (6) contains
an additional factor M(p;s 11 ,S21 ), which is given by equation (7). This factor,
determined primarily by the state of coherence of the optical field at the boundary, is
a measure of the extent to which the present generalized result differs from the
conventional law connecting the radiances B, and B2 . Through the cross-spectral
density appearing in the definition (4) of the Wigner function y, the factor Al
depends, in general, both on the optical intensity and on the complex degree of
spatial coherence of the light at the interface. In fact, we see from equation (7) that,
apart from a purely geometrical part, the factor M is simply the ratio of the values
that the associated function X(p, f) assumes with the arguments f 2 = k2S21 and
f, = k1s1 ,.

If the directional vectors s, and S2 specify a geometrical ray path across the
boundary, then k2s 2 , = k s21 according to Snell's law and the additional factor M
reduces in this case to the ratio cos 0 2 /cos 0t .This result is a consequence of the
requirements that there is no reflected wave corresponding to a wave incident from
the direction s, and that the transmitted wave in the direction S2 matches the values
of the incident wave at the interface. The result holds separately for any incident-
wave direction and also implies that under the present assumptions energy is not
strictly conserved in passage across the surface. However, if the appropriate
reflection and transmission coefficients are included, the energy conservation for
plane waves is restored. Converselv, straightforward calculations using the general
results (6) and (7) show that it 1 (p, S, I) is zero except for some \al uc so , then
B, (P,S2) will also differ from zero only vhen n2S2 . = ntis0, in accordance with

geometrical optics.
We will emphasize, furthermore, that unlike in the conventional radiance

theorem (1), the variables S1 , and S21 in the generalized result expressed by
equations (6) and (7) are projections of quite arbitrary unit vectors that point towards
the half-space z > 0. This makes it possible to use the analytic properties of the
generalized radiance function B(p, s,). It implies also, for example, that in the case
when n, <n 2 , the generalized radiance B+ (P,s2L) may be non-zero even in the
domain n t /n 2 < (S21! < 1, corresponding to angles 02 larger than the critical angle of
total internal reflection. Physically, such a situation represents the phenomenon
where evanescent way s are turned into homogeneous (propagating) aves by
refraction at the discontinuity.

4. Radiance theorem with quasi-homogeneous light
Let us assume now that the optical field at the interface is quasi-homogeneous,

i.e. one that is characterized by a cross-spectral density function of the form [ 24]

if'(PI, P2 ) = P((PI + P2)/2)g(p, - -p 2 ), (8)

where 1(p), the optical intensity, is a 'slow' function of p and g(p'), the complex
degree of spatial coherence [18], isa 'fast' function ofp' (sec [24], § I1). The Wigner
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function associated .% Ith stich a hflvt tdistribuition is nedlioudfo equation (4)
to he given by% the expression

1(p. f) (2 7)
2fj(p)k(f,() 5

where

t.(f) i 1 2n fl g(p) v x 1( If p) d- 2 1ii

is the two-dimensional spatial Fourier t ran.,forin of g(p ). ( )i subst itutinog f rom

equa~tion (9) into the general formula (7), we obtain the expression

cos01 g(k~sl 1  P

FLquation ( II ) sho\% s that for it quasi-homogeneous field thle factor.1I, wvhich is absenit

InI the( usulII formula (I ), i,; independent of the optical intensity of the. light
distribution at the interface. Mo oreover, sincekg(p') is a 'fast' function Of p', its Fourier
transform k(f) is a. 'slow%' function of f. Consequently for quasi-homogeneous light
MI(P; S , S2 1 ) :-I and the generalized result (6) is seen to approximate the
conventional radiance theorem (1) with relatively good accuracy o~ er a range of'%
directions S, and s, such that Is, I z:IS2 I I We note briefly also that for st.,tlii::illv A.

homo geneous field, equation (I11) remains valid even when g(p') is not a shar-1,ly -

peaked function. Fonr Such fields the generalized result (6) is seen to depend on thle
functional form of the complex degree of spatial coherence g(p').

Let us niow assume, furthermore, that n, < nZ and that the complex degree of
spatial coherence of the light at the interface is given by the expression

sin k, p'
k uP' (12)

'?, P,

%ihere p)p'). 'This vxpression is characteristic of a I amhertian radiator, such as
blackbody radiation source [25]. Making use of the definition (2), the generalized

radiance BI (p' s,1 ) is then found to be independent of the directional variable S,1
and we will denote it b\ Bo0 (p). ()n substituting from equation (12) into equation (I I)
and making use of formula (0), wt obtain the following result:

en,2[ Cs 2 0 1/,2
1B, (pS s, - -- - ()2-- I B,(P) if 1), < 1,

0.( if 02 > 0. (13)

I lere thle angle 0, is defined l\v the relation

sitn 0,,= n ' (14)

TIhc formui~la I 13 sho\\ s that if the field at the lintrface is quLasi-homogeneouLs (or0
St rio t\ 11'.hoag'netOuIS) wIth its comIpleX degree of spatial coherence given b\-
euation (12), then there is a maximum angle, (0, , beyond w hich no energy is
raulsun itted . Accioding to eq uat ion (14), this angle is precisely the critical angle of

tt tal Inuternail reflection.

1Th'iu rtil it I tmi~cqueuice oIf thu( fact that the spatia) Fouier transforin of' thc
t-r-cltioi h iktio ( 2) , dewtail\. zero outstide the doniain If I < k, (see [251, § 11). 1 luict'

Iti- fheld III, it-elt -,I due . uuudhiv ciotaits tit etvanescent waves that ctould hb' turned by thu.
ulit ittintim t\ ,iriac Into hornot~iTIoOUiS ovrupagatlng at anglIes larger than 0,
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Raodiangce theoremn icith partil/vl (oherent light 1375

Formnula (13) also implies that even f'or angles less than the mnaximumVI angle 0,
there is strictly. speaking an angular dependence that is not present in thle
cotwentitinal torin (I) of' thle radianc, theoremn. This angular dependence is a,
conseqluenice of the basic assumt~ptionS of' physical optics (comipare the discussion
tol)lowing equations(Oi nd (7)), and it is illustrated in figure 3 f'or t'% ivalues of thv
ratio iln, u. TheCse curves, calculated according to equLation ( 13), indicate that the
ratio B. (p. 2 ) flo(p) remiains substantially' constant over a relatively wide range of
angles 02, in) agreemnent %%ith thle conventional radiance theoremn. Such at behaviour
becomecs venl more donlunatit as thle ratio r,, is deccreased. In the limit as pi, pi
approaches uinity, there is, no refracting surface anid j? , (p, s becomies, of course,
identical to l?,Ap).

6

C15

2

0 -- 2, C 0 400 50 80" ~
41-90 65.40 OC

i vu re 3. I epcildvii c of H1), (s, 1) l(p) onl the angle 0, (sin 02~ --: IS2. 1) f'or two lo tes of'
hel( rati nU n, twiarm-I I and 1.; *5 w hen the deg rev of fielId co rrel ationm at thle interface
IS cVenC by .eqIuation (1 2). T'he angle 0, denotes the miaximumn angle bey ond which no
viet i ~ I'.Iran'.ilitteil

5. Summary and discussion
fin this paper %%v studied the radiance theoremn in the context oif partially cohecrent

wavvs and. considered onlk' ref'raction at aI planar interface se;)aritting two hoilno-
genecotIs media. TIhe analysis %%as carried out %%ithin thle f'ram'c tirk (of thle scalar
thc ory of light. It %\a, based oti the assumrptions that the optical field remnains
'''ntinuous across the boundary andl that, as is customnary in physical optics, thle
effe cts (of reflect ion call be neglecVted. Tle disc Out illit v may thereo ore he thought of
nierely as at limiting case oof anl optical elemnent represented b\ an amlplituide
trailstnission function t(p). m th /(Ip) approaching unity. Since the transmnission
tuiictioro is independento fi u roett ofteicdn eld, such as, its direction (ot

pr opagat ion, this miethod ty-picall- leads to results that can he expectedI to hold only
tin thle paraxial regimie.

)tir analysis showedI that the rad iance theoremn with light of' a.n\ state of'
coherence contains ain additional factor, not present tin the e onventironal radiance
tluiemn, thait depenrds ilo gene1)ral both (in the optical intensity and on the c onplex
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invariance of the Spectrum of Light on Propagation

Emil Wolf"I
f)i'p.rtment of Phi sits and Astronom'. University of Rochester. Rochester, New YorA 14627

tReceiwed 27 January 1986)
The question is raised as to whether the normalized spectrum of light remains unchanged on

propagation through free space. It is shown that for sources of a certain class that includes the usu-
al thermal sources, the normalized spectrum will, in general, depend on Ihe location of the observa-
tion point unless the degree of spectral coherence of the light across the source obeys a certain scat-
ing tsA Possible implicatons of the analysis for astrophysics are menitoned

PA(Snumber\ 4210Mg, 0765-b. 4?68.if

Measurements of the spectrum of light are generally where the angular brackets denote the ensemble aver-
made some distance away from its sources and in age. Now the spectral density and the self-coherence
many cases, as for example in astronomy, they are function are the "diagonal elements" (r 2 - r =r) of
made exceeding% far away It is taken for granted that two basic optical correlation functions, viz., the cross-
the normalized spectral distribution of the light in- spectral density
cident on a detector after propagation from the source
through free space is the same as that of the light in W(rl, 2,w) j.r(r, 2. )e'"' d,. (3)

4fthe source region I will refer to this assumption as and the mutual coherence function
the assumption of invariamue o! the spectrum on prop-
agation This assumption, which is implicit in all of lir r2, 7) - (E*(r.t )E(r 2, + r)) (4)
spectroscop), does not appear to have been previously
questioned, probabl, because with light from tradition- It is well known that both the mutual coherence fun-
al sources one has neser encountered any problems tion and the cross-spectral density obey precise prop-
with it !ioe'er. Aith the gradual development of agation laws For example, in free space4

rather unconventional light sources and with .he rela- (V J+A 2) '(r1.r 2, )= 0 /= 1.2). (5)
titel. frequent discoseries of stellar objects of an un-
lamiliar kind. it is obviously desirable to understand where
whether all such sources generate light whose spec- k -,wlc. (6)
trum is invariant on propagation, and if so, what the
reasons for it are Actually it is not difficult to con- with c being the speed of light in vacua and V being
ceie of sources that generate light whose spectrum is the Laplacian operator acting with respect to the vari-
not invariant on propagation In this note I will shc; able r,. Consequently, both the mutual coherence
%hat are the characteristics of a certain class of sources function and the cross-spectral density and, in fact.
that generate light whose spectrum is invariant, at least also their normalized values change appreciably on
in the far zone propagation. For example, for a spatially incoherent

From the standpoint of optical coherence theory, in- planar source W(r,.r2.w) and r(rl.r 2,,) will be
sariance of the spectrum of light on propagation from essentially , correlated with respect to ri and r2 at the
conventional sources is a rather remarkable fact, as can source plane but will have nonzero values for widel%
be seen from the lollowing simple argument. Consid- separated pairs of points which are sufficiently far awa.
er an optical field generated by a stationary source in from the source. This is the essence of the well
free space The basic field variable, say the electric known van Cittert-Zernike theorem (Ref 1, Sect
field strength at the space-time point (rt ), -nay be 10.4.2). In physical terms, the correlation in the field
represented by its complex analytic signal l 2 E(r,r). generated by a spatially incoherent source may be
According to the Wiener-Khintchine theorem3 the shown to have its origin in the process of superposi-
spectral densit. of the light at the point r is then tion. We thus have the following rather strange situa-
represented b% the Fourier transform, tion: The correlations of the light may change drasti-

cally on propagation, yet, under commonly occurring
S ( r.,,= ir r )"O'' ~.(i) circumstances, their (suitably normalized) diagonal

of the autocorrelation function (known in the optical elements, which represent the spectrum of the light or
context as the self-coherence function) of the field its Fourier transform, remain unchanged.
variable It is defined as To obtain some insight into this problem we con-

sider light generated by a very simple model source.
I(r )= ltr.r tf., r, -4- . (2) namely, a planar source occupying a finite domain D of
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a plane z-0 and radiating into the half space : > 0, On substituting Eq. (8) into Eq. (10) we obtain for the
which has the same spectral distribution S""(w) at normalized spectrum in the far zone the expression
each source point P(p) and whose degree of spectral kS 0 'w ) i A'(u .Au
coherence' /j°(1 (p.p 2 .wc) is statistically homogene- S1i)(u.)- _i
ous. i.e.. has the functional form (()(p2-pt.w) fk 2 S'0 (w )i'0 t u .. ,)d.
The cross-spectral density of the light across the It is clear from Eq. (1) that the normalized spe,
source plane is then given by trum of the light depends on the direction u i.e . it ,

W'°'(p1-P2-W) in general not invariant throughout the far zone
However, it is seen at once from Eq. (I1) that it "ill

(p1 )E(p 2 )S(W)P()0 (p2 -pl ), (7) be invariant throughout the far zone if the Fourier

where *(p) = I or 0 according to whether the point transform of the degree of spectral coherence of the
P(p) is located within or outside the source area D in light in the source plane is the product of a function ot

the plane : - O. frequency and a function of direction, i.e it is of thL
We will also assume that at each effective frequenc form

w present in the source spectrum, the linear dimen- ui(/,u1 ,w.)- (U)t/(u ) (1,
sions of the source are much larger than the spectral
correlation length [the effective width A of ImiU°(p ' .  In this case Eq. (11) reduces to
w) I]. Sources of this kind belong to the class of so-
called quasihornogeneous sources, which have been ex- S1- (u. w) .. - 3,
tensively studied in coherence theory in recent years "d
Most of the usual thermal sources are of this kind

The radiant intensit% J,(u). i e, the rate at which and the expression on the right is independent of thc
energy is radiated at frequenc. w per unit solid angle direction u
around a direction specified b) a unit vector u, is given I will now show that the condition ( 12) has som in-
by the expression [cf. Ref 6, Eq. (4.8)] teresting implications, which follow, from the fact th

J.(u)=kAAS "'( A"'' (Au .,)cosf (8) A'D' is a correlation coefficient. Before doing th),, %.

note that since u is a unit vector. iu < 1 Ihvc'-
In this formula, 4 is the area of the source, we will now assume that the factorizatio c(r'diti

(12) holds for all two-dimensional \ecitor- u
,(( f. ) f .(. w d:,," (9) 1u Iu < <c ). This assum ption will be trl\ ,i,;i ',,-

(217)- fled if the degree of spectral coherence up (p. .

is the two-dimensional spatial Fourier transform of the at each effective temporal frequenc. w. band hmnii,.
degree of spectral coherence. u is the transverse part in the spatial frequency plane to a circle of radiu,
of the unit vector u, i e . the component of u (con- about the origin, in more physical terms this condtl;.
sidered as a io-dimensional vector) perpendicular to means that A0 '(p. w ) does not var appreL. iihk .

the : axis, and & is the angle between the u and the distances of the order of the %akelengt, A -
directions (see Fig. I). Evidently the normalized spec- With this being understood let us take the I (_ C'
tral densit) S' ' ( u , w) at a point in the far zone, in transform of Eq. (12). We then find at once tn,'

the direction specified b) the unit vector u, is given b\ 4O)(p,)

So-' 'u. (0 J . ,( u )J ,.(u )d (# (I0- . F(w)f H(u, )exp(A u, p )d ( A u I

i.e.,

where H is, of course, the two-dimensional I ourr I
transform of H. Since p1o(p.w) is a correlaton Li,

u efficient it has the value unity when 0 0, i ._

P_ 21""(0, ) 1. for all ,. it

piarar *and hence Eq. (15) implies that
sourcej - -'rc k 2 F(u)IH(0)W-  V

Since the left-hand side of Eq (171 depend. t,
FlG I lljusir,srn of ihe notation frequency but the right-hand side is independent

7 4
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each side must be a constant (a say) and consequently ly largely responsible for the commonly held, but

f (W) "A. '. (18) nevertheless incorrect, belief that spectral invariance is
a general property of light.

7To important conclusions follow at once from This Letter has dealt with what is probably the sim-
tne,,e results If we substitute Eq. (18) into Eq. (13) plest problem regarding spectral invariance on prop-
NL -,.tain the following expression for the normalized agation. It would seem that some significant questions
s ,,iruni of light in the far zone in this area might be profitably studied. Among them

* SO(W) are the elucidation of the physical origin of the scaling
S* u - ()du S law, spectral properties of light from a broader class of

fS sources than considered here, the relation between the

1 his formula shows that not only is the normalized scaling law and Mandel's results regarding cross-
spectrum of the light now the same throughout the far spectrally pure light, 8 9 and relativistic effects. Appli-
,one. but it is also equal to the normalized spectrum of cations of the results to problems of astrophysics
:he light at each source point might be of particular interest, at this stage one might

Next we substitute Eq (18) into Eq (15) and set only speculate whether source correlations ma.
"I t h, - jp 'Ae then obtain for ;UA the ex- perhaps not give rise to differences between the spec-
pression trum of the emitted light and the spectrum of the

tp: -p . ) h1k 1,P( p p) detected light that originates in some stellar sources.
It is a pleasure to acknowledge stimulating discus-

(k woc ): (20) sions with Professor Leonard Mandel about the subject
t the complex degree of spectral coherence is a matter of this note. This research was supported by

funcrion of the variable f - k p: - p) only. We will the National Science Foundation and by the Air Force
rfeter to Eq (20) as the salhr; alH. Obviously for a Geophysics Laboratory under Air Force Office of
s(,ur,.e that satisfies this la. the knowledge of the de- Scientific Research Task No. 2310G1.
gree of spectral coherence of the light in the source
piano at an particular frequenc cu specifies it for all
Irequen ice.
I hc sL,:hng law (20), .which ensures that for sources

(,I trie cl, that we are considering the normalized 1')Also at the Institute of Optics, Universit) of Rochester.
spe.Arun-. of the light is the same throughout the far Rochester, N. Y. 14627
iont and is equal to the normalized spectrum of the IM. Born and E. Wolf, Principles of Optics (Pergamon. Ox-
hghi at each source point ([q (19)]. is the main result ford and New York, 1980), 6th ed., Sect 10.2

d r
2L. Mandel and E. Wolf. Rev. Mod Phys, 37, 231 (19651

It '- naura) to inquire whether sources are known 3 Kittel. Eleentar.i Sfaliscal Fhssw.t (%ite3  Neu ' ork.

thai 0h. this scaling la% The answer is affirmative. 1958), Sect. 28.4E. Wolf, J Opt Soc. Am. 68, 6 (1978), Eqs. (5.3)
\.l,\ oiw tne commonly occurring sources, including 5The degree of spectral coherence is defined by the for-
hlj.khod, sources, ohe> Lambert's radiation law [Ref. mula (cf. L Mandel and E. Wolf, J. Opt. Soc Am 66. 529
1 Sc t 4 S I It is known that all quasi-homo- (1976)1
gent'cus Lambertian sources hae the same degree of W,0,(p,,
,pt.,. ird' coherence. viz IP 1.P2, )- o

k,,'" tp--p.w),=sin(A/,p,-pj1 )/klp 2-pil. (21)
6W. H. Carter and E Wolf, J. Opt. Soc Am 67. 78

whi.h is seen to satisf) the scaling law (20). Accord- (1977).
ing to the preceding analysis such sources will generate 7W. H Carter and E, Wolf, J. Opt Soc Am 65. 10,"
light whose normalized spectrum is the same (1975).
throughout the far zone and is equal to the normalized 8L. Mandel, J Opt. Soc Am. 51, 1342 (1961)
spectrum at each source point This fact is undoubted- 9See, Mandel and Wolf, Ref. 5.
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llAIIOMEIRY AS A SIIORT-WAVII-T N(;iIl LIMIT OF STATISTICAL.I
%VAN'lKtIWORN WIT11'II GOBAI.IX IN(COIIRENT 501 IR(FS

John' I O: LIY 1 id Emitil W( )I .1*

It, - n ~i that 1,i heldt piuluted hs quam'. mlrotgliei.suuc,. mc iif the gencrailiid itliile ftmouctln' intt~dtlie It%

%a liher IvdtiCc,. III thc IsIlptit i mihu t I Ilirgv sa,sc itinhei, it, a (1ii1l it'u thu,1 It. ;tIlO lt, ptI.1 ICt t 4~. tile t.1iaikix t

ii.ilititIl r.idhtiictt i t Al ti cspic'.stttu " 1hi 1 lt. t lkie is 41tild o t olt c ii "I Ilit tIItII sI (iIsItitIIIti'ti a ts' ile

'Okltcati.. the dcgivc If spcoral wocit III,: esurke I Ile ie'.iilts piiividhl . riglittis Iiiihitiii lit .,ta it"r il Joel:

'iL 1)tihei h I II i iiti,~ ial ~ thew,,s

1. Introduction We believe that tile difficulties just menltioneld
arose because thie previous investigations did not take

D~urintg thie last two dlecadles several attempts have into account the fact that traditional radiomectry deals
hes'n made to elucidate tie loundations of radiom- with sources that are spatially highly incoherent
etiv. Itt partiCoLI'r several auhitirs 11 51 proposed (namely thermal sources) and that they generate radia-
expressions for the basic quantity of radiortietry. tion whose effective wavelengths X are very small
namielv the (.spectral) radiance, in terms of various compared with their linear dimensions ". We show
second-order coirrelatioin lunctions of the optical in this note that when these facts are taken into ac-
lichi, Althugh each oit the proised expressions ex- count at consistent forimulation of radiomietty is oh-

hiissome III the well-known properties that are at- tamned oin the basis (it' second-oider coherenmle theory,
rihmm ed ho the radiance in traditional radiomietry, at least for soturces and fields to free space. ' "iore spec-

nine if liern possesses all o f them to r sonurces and ificalhly, we sho w that t radi tionmal radion'ietry co rrec tly
fields of arbitrary slte of coherence. Itt particular, describes the behavior oif fields generated by planar
sonme of the proposed expressioiis for the radiance quasi-ititiogeneinis sources I IlIj in free space, in the
cart take on negatiye values, a result that contradicts asynmptoitic littit as the wave number k =21ru 'X
ttilt y sicalI ttiea ti ng of' rad ianmce. More recently it
was showin 161 that it is not possible to define a radi-
ance for a planar source which depends linearly on a
second-order correlation function of the source field
andl which satisfies three basic postulates oif radion- i na neein~rcn ae l eiiino ai
etry for every possible state if cohierence of the wa prilw which itepenid% ron -ineatly (n a seetid
source order cmlr wrtii t [ionif wi ,Itile qmitrve anti which satis-

lic, thle three postult"e. It appears, however, that t11ns
Rec.irah utppriedh% K tile N5,Iill'tI NIiciieC t I kIIIIt,it(I'll radtiance tl.its it Aw) the radionictric tlmw for (ie propa-

titdcr (itti t1hI-8 114h2t ik it)e Alii I Otte (iclIttsa- lgatliioi ut dijiILC In Itee spake.

I h,iirao titider At () SR I .i'k 2 AHK it1 AlIlIusitns Ii, tlic poissihthtm thiat traditiimat rtdioietry

(iiits e, fr, i [lie Di-)epirtmewlt ktts l issiippi State itttptiis siuch rtaiiha tve been-t tmade troin litle to

t 1111cisli,, \tissi1SIP11 t ,Jn. %IS 1762 1 SA lttle 10h1, IN t101. hilt tte .ippr.iiite inatlieniaticat
- a t the tInsti itte III O pt it.s. I its ersits lit Ri chestert ttitii eat mon has not lw-in lresiousts po iided.
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2. Generalized radiance where

Ic isc~iiie a setidr s.et Ii.' STcii)iil a, -, -- ( 0). 12.4)

Cl~~~~ ~ ~ ~ It it '.tsde Ieol-r .ie0,tc:l) IlV

liai-si'ace :3>--0. We as-siiiii hal, tlie smi ce ltne I iu- f-i 2 101 i'.8 1

lin, aire stal is! ieallv stat iiiiarv . We \kill ifsot y I. t 2

A mtiiikt Illili S and liv r ie tliree-tiiiieisiil seelii eteiidht tver tile VSt11 Ail .I)I it - N, f

sliace 3>0. boutli ireered toi a lixed oii 0ii( inl tile generahied rilianec liiiieHl iikUCl h\ tiueiI \kAltItiie

tlltc'e lc'Litti (see fir. Iij. ill rel's. 141 iia lhe ki rit eliei i le tlii

I -i W1 r r i) he tile (IS-jC t'd (C MY ltileI- a s,.,) v p r
illd tidier :ittiI rO som, liiiy t 1%%() iili V, I ad P%

!It i t %krisi Ili I I t' iii-5 t N IWI.1 ld1SItV it ):\ e Itt pi' ~ 1:1 I i i tiNNIiii I 5 Iil 'AitC SN

k% SS\C Ii101d uI(r. I') esqN i i' i- 1. ll t1tO It' siiie taikes ()ii i It, . ii, ncie i I li -it, c ii ft.

I reiicile C. a I? litile byl Iiakiigli ii~k li laIn that 1 (1Mfle MiitrtIi ''ii- %.

titr1 r , ) 1:r 1  v) r' v')) (2. 1 tuti i enirlct. iivleesise
Ze I1 ti I II Iii It li i v iT tile plalie %

'lir tile anguItlar bracket tin tile i ithianil side iii z 0 h\ tile Rayeigh lurtilii It4

"j I 2 I ) fezliues thle aveiareo vet IthIIis enlsembit1)le. [ lie£

1'1 ' t'c teitleiti fa 11 I u lf IcIti iee tit' 11ris eii Neile Ifr, vp [CuR. v) I "'" P. r) 121.

-CbeS. irtI II iltt tile liail-siace: lte l leliuiitlti % a

qul.li 'Ii V Mieie R? r p and 0,'(R. v) is tile (,ien Niid

A7. 0Uri I. 2.) (;(R . v I i'7(Ui/ ijex p(ikRI ij R , s

lt A - ":i1 Indi is t-e '110ie I I 11011 inl taciti. ani %% witII i R' R ( )i i sti hIi t t in i ,,i I Pri -f y i iI

1: hvriases as ail tliiii-iii p~wI Ii staIve .11 11iiv ill (2.7) lilt, eql (2.o) andi iteianin tile ideis )t

HIT, hll~i i' a sc\ is well kiuitt i stitt selutitins cal integititn aiid aveliagin4 one reatilids thi

1%'s 1 ijW Niiesittl Mill~er 'Iv ier;ti tl'.iitti'iis. 1;1 lilt'

ni Irill ap ul 11ula t sjuietiiiii it p1 ii waves, i.e. In tile OAr. N (,\I)( is r).jGl/?. i-in

Ijii Pr. eti As, k Il/ I 2.1)?s r k
kt ivr 11 (( Ice su% tile '121ale i.dac 13)

1i t Ill ~iep'c

P '1p SI ul*. -I(. p, 5) dIN, . Iv) exp( Aks P

I lit i ~eiil i 0 Ir, xs clt i lv Its ll nce it , ;i itili

/ late it iistcaei ,IIsi ii iil itt i ilimw t ii c , I I s 'Aiti

/1.1 is l oil i. I ll pai l i l v ,1 O iis aslci Its

-' k -l h ts i I ist t NI j'it d'i tll su t liie q t11 % d II a e t ill II d it 'Til
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3. Generalized radiance of a field generated by a A3 10)(p, s) = (k/21r) 2s, exp(iks •p)
qnasi-homogeneous source

% c ill .w spcialic ftr exple'sions 12.10) nd Xf IVi))( p, p', v) exl)( s ' p) d21'. (3.2)

2 29) I the IiICiljicd radiance to) tie case whenll
tile surce is Ijiasi-hoo,) 'eneits 1 IIi. "fie degree of where W(O)( p, p'. v) is the cross-spect ral density of
spectilj coherence 0 Ia quasi-h oniogencous source tie field in the sourice plane. Il deriving eq. 13.2), eq.
depends on tie two source variables PI. P2 only (2.1) was used.
through the dit ference P2  p IC Consequently its For a quasi-homogeneous source W(0 ) is given by
,.ross-spectra) density has the lornl eq. (3.11, and if we use that equation tire formula

It511'( P  P v) (3.2) becomes

j: i/O) P.l')vii 1"21[)O P2. v)1 1/2 g!O)(P2 p = s (k/2n )2S, exp(iks.p)

(3.1) X 1/(0)( p, V) 1/2f ii(0)(p,, V)l l/2gt0)(p, - p, V)
where I (ill p. v) represents the optical intensity at tie Pv
sou rce point S and gI0 ) (p2  P, v) is the degree of

X cxp( iks1 p) d 2 p'. (3.3)
spectiatl coherence t the light at two source
points S, and S, (wilh position vectors p I and P 2 Since for a quasi-hontogencous source the optical in-
rcspect ively ). Moreover. for sources of this class tensity 1(0)(p, v) (wit liv fixed) remains sensibly con-
po,(1' p, v) c .inves so slowly witi the posit ioln (p) slant oiver regions whose iiiei dlliiienisionls ale ot the

acrn), lie wrlcc thal it is essenltially collsal li over order of ilie effective illile 1, of 0 ( )P, we nay ieplace
legiolls whose linear ditnensions are of'l tie order of the factor I/(f)(P '. ,,j t/2 1y 11(l( p, )11/2 in eq.

the effective range of g"i')( P2  P , v). i.e. of the (3.3) and then take it outside the integral sign. More.
Oilder tf tire spectral correlation length. 1, say, of the over, since tie linear dimensions of a quasi-honloge-
light acioss the source. It is also assumed that the tiii- neous source ate much greater than Iv , tie integration
ear dimensions of the source are large cotmlpared both over a may be taken over the whole p '-plane without
with 1, and with the wavelength A = c/v. introducing an appreciable error. Eq. (3.3) then gives,

Sources of this class include the usual thermal (e.g. with very high degree of accuracy, the following ex-
blackbody) sources for which I is of the order of the pression for B f)(p, s):
wavelength, filt oitier types of sources, for which Iv  'W(P. s) k2s 00 )(p, t)k 101(ks1 . (3.4)
may he much greater than the wavelength, also belong ' z
to this category. I lowever, all quasi-honogeneous Iere ,(O)(f, P) is the two-dimensional Fourier trans-
sources may he said to he globally incoherent, since form ofg(O'( p', v), i.e.
the domain which they occupy is very riuch larger
than their (spectral) coherence area (_ n12). k(( V) = 2ir) 2 fg0)(p' , ) exp( if p ') p'.

It) determine tie generalized radiance o the field (3.5)
prlduced by a quasi-hitlgeneous source we proceed
as Iollows. We trst set z = 0 in eq. (2.3) and theii take TIme 'ititiula (3.4) shows that tie behavior of the
the I ourier itiveise li the resultiittu Iiiiiila. This gives generali/cd rauiiicce l a ultiasi-honilogutleous source
aln cxpicsiuon for a(st, v) iii leri, it the houndaiy at a itilt S iii tie slurce plane, it a diattion speci.
values. l)(i) P. v), of (r, v) in the plane z = 0. Next tied by the iniit vectoir s. is determined by tie value
we substitute this expression into eq. (2. 10) and ob- ui the optical ititetisiti, at that point and by the spa-
tait tile following expression for the generalized radi. tial I'Fouricr colponent labeled by tie spatial-frequen-
antce in tie source plane: cy vector kst of the degree of spectral coherence of

the light in tie source plane. This result was obtainied
previously by a slightly different argument in ref.
I11 . eq. (A10).
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n~ici33C k 21rx FoIr this p1i111335C we1 carry 3111 it is tile ki31:111 point1 33) tlI 135 kil~f. id 11.1f it S
th kill' 3111 lim ol ot3.33113 I l [liei. I j3dilt-llid sidet I 'e. ( '.8)( lies ouiij ' t ite iwev1lll 313''. 33I33 t ' .t .13.

lil m ll3fi '31.131 13l l N11l111 3\1
3
3'-woI33II 1 11k .i (;I011 po n 13 i11 ilic 11 i stII k~i \\o %%ill *..' N,I is iliii th'

13313 13131 (,(R. I i c I I '). V. Ow I3 13 il .,i 1'I3, Iit' .1 N113131 )Ic'13IlII33 1.I \iiIi .111,

(,, ' I(4.1) W hIeii 3IN , Sloc It'At .I I II II Io3 I1 :I \3I3II 1, 113
C 1r s (r. ~p ro ini .( l3531:it 131 ('3.(r, s5 IN I omt I 3,,k

'A 113.'13.' (Ar~~~C'P, s ' lfl(r 1/.I ij'S~~ I5

I k: /(r S; I j sk(471

'3 ~~~~~(4.2) Whent'3 Sit IN l1catedI otsidet o. the33' Ill 3111133 C 1313\

133333j133 comes~i front~ c33131ihIutlin 33 criticAi poitsi.

(' A s I i3l- p z3 explik(/? 31)-dp. (4.3) oftile SeColII kiIltl. 411d0 is itll Iight12 oller Ill I 'k than13
-7 R 1 - he expression oli tile liv.Illhanll S.ide Ill ell. (4 '.0)

anid we Iav expr-es"ts 1.1Icl ( lkig solC Iillerts
\&t tile. itllit'ple latio313 331 thlt as'\3111 33i it lol h\ 3133

WI lill"g

"3R I/ p (4.4) ('Irs . I) Ik143

I :3C
1  

13 !k 1" 03:I i j l it) qs. (4.2 and13 (4) de-' ()Il M11 til w ill ' 11u, ml3 CIN, I i llill eq.I ( 1.6:I .1313

3.31ld '33 A ill t '.. " \.35. i let 3'\p13331 t13 1, 3331 1151333.' tile 1;11 1 1:t P''' 1 /0103 '.51CH 31 11 3C1114'1 1101

,'\I) IJ', p( PI 1 mJ l I~ifle k Iepel31'33 im3plicit3 ill 33133SidOll' ~ (), "T1 1i111111V oh131:IiI 11'Ch 1l (w,35 13' Ifill
l1w 3 '.11 13313'.INII5 P'3( p v)( P")3( p, AI.'rrp AN A 131311 apl33 11I~I on3 33 Iltl ll'all/t'J 3I;IIitt' 11111,

13333333 I,3'3 231 .'l3'33. 311w l'3/3313'1311i1 133 ssol x ll, likkll 331 A1 113131 3'1'311'3.131'3 h\ l 11INI Ill3133' ill313,

31313l S tilt' joll1iIIl ill ill1t'I'3lI 101. ()31 tile'

It313 I I NI I. JI I I I Si-hol V.3133I co I Sol I' I IlCl cc3 t.1(r II 1/f, .sI s I

l,.1N1I .1.3 1313N1.3uh33l!3'I3'lIN ~l~~lt l.lI N '131515 tI3.'3
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Fhe asymiptotic atpproxtiiatioit (4.8) (4.9) to tile SU~

g,,eiteralizi~cl r ialirce is the fiain result of* this note.
We will show that it has a itittihert of iinpom fant( coni- o)
sequecetsraiioa.

F-irst we note that according totaiinlradhioi I
etry tile late at which cnergy crosses anl area clement I *,f

* d.4 per unit solid angle around a direction specified by L
a real unit vector s is given by B,(r. s)s-n dA, where n
is the unit normal to dA .in particular it follows fron i.2 lutaigtentto rlyn t iefrua 41)
this formula that the rate at which energy is radiated So is the point in the source plane whtose position vector Po

*into the far zone per unit solid angle around thle s- is griven by eq. (4.6); it is the point ot'intersection with the
direction (i.e. the radiant intcnsity)i act oss any plane source plane of' thle tine through the point 1) in thle direction
Z ZO const. > 0 is given by of' thle real unit vectors.

P (s) =S, f H~r, .s) dx dy. (4.10) point So, whose positiont vector is givet by eq. (4.0),----a is Precisely thle point at whticht fite lite thmrottgl P. int

()i suslimij ljin q 49)int eq (410)wetile direct ott specified hy tile tunit sectoi s (agamitt is-
o ttd d fmh in d ti m th a t i q 4 i t i q 4 1 ) w s itti e i t o hie e a l . il m tcse c s tile s 0 1 1 1cc p lamn e Z 0 .

te~mhiy timd tlmit 1Hentce eq. (4.13) implies Ilimt

P,(s) = (2irk )2SZ 0140.(0  v)k)jtks, V), (4.11) 11,0), s) k2 .5oMS. ,t~1  r.)gtflt(ks1 , v) if's C~ Sp

where 0ifs Q~

7 1tt)( () ) =(2 1r) j I/ ( P L . (4)2 (4.14)

If we recall thtat s- cos 0, where 0 is tile anple that whtere 921 dentotes time solid angle generated by the
the (real) s-directio )n mtakes witht thle tortmal to the lines pointtintg frottt tile source pioints to 1) (see fig. 2).
soutrce tplatme, tile rialt-htand side of" thte fmtmula (4.11) Thte first tltmee terttts on tlte right-htand side oftlie
is found ito be precisely time expression for radiant in- first line of' eq. (4.14) are evidently iton-tegative. So
tensity from a quasi-Imogencoits source, calculated is the last temi mtt )(ks t , ri). sinmce it is thle Iouriei
by physical optics (ref. I1I111, eq. (4,8)1. t ransfortm of a nm mi-itega tive definite Itttcltiotti 1171,

It will he convenient for tite purpose of'subsequent H ence
discussion to express time frmula (4.9) in two alter- I(P 0.4.5
tnative fo ins First we rew rite it as ,)s)-0.415

U"(Ps k2, jloi(S,. v k~)(A v) I o I ()I et My denote time littiting value of B,~ whentfthe spa-

1I,,(~. .) &2s. I~~~(S V )tttt~s . ) if ' 0 ial argummentt (r it P) appritocltcs tile sourtce' planie

it ~ Si (IZ . Sittce time optical imtfensilY is tent at atmv ptoitm
I) I ~~ ~J I In othdat plane wltici i~s hiicatd il lside tile sittirce

(41) atea in, we htave ftotm eq. (4.13)

further it follow% from elementary geometry tltat tite ,t~). fP~o 41
Fitnally we see at once fromt eq. (4.14) thtat

SRiYOFm11 .iiz li tCa tion ir ithte idcn iti'cation of thle expres- B,( P ) =- f)S. )(.7
sion t 4.10) \%i th tifte radianlt intensity oif ph~sdeal optics V ~ 4

requires some mmfdinwiwil coisiertio ns, which we plant to Thmis formtula imiplies thtat R",.s) is cottstant amhtnt'
por-eni tin anthter palm.r eacht line fit t ile Itit If-space > >0.
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The fact that eq. (4. 10), with B,, given I)\ eq. (4.9), 12i V.1 *Tatarskii , Tho e'tect of the turbulent atmnosphere
represents the radiant initersovtt as calculated Iroin (A U'I~ p:'))agzAlo', -i. S. t).p . Commerce, Na-

(41) 41)and (4. 17), show that B,, has all the se.' .ds., I I I. lir I Ii tjilinfinhc 7 (1964) 5 59.
miprprisattiue tordacW nay, 31(16natv - I wrkiR~ohi Quant.
thrfrconclude that traditional radliotnetr)', wit/h I lecwuri I i 19 721Jo '
trrainegitven by eq. (4.9), correctly, describes 141 idl A-.ttiti jiji i 10?2.

th eairof fields generated h I' quasi-homogeneou s 6) 1 oi 16 I
plnrsucsin fret, space, in the asi'mptotic limit as i * , I .j I.~

Fnl ewish to rcimark that although we derived N~ I (I'jt 9 o
teexpression (4.9) frthe radiance from one pattic- 181 A I I rihwv iOo.. .-k '1 &11 P 261
ulrdefinition of a generalized radiance function I [1 91 F iannson, J. op S .. U, 71 ',hit) 1544.

1101 HIM. t'ekr',en, 01-,, ., 2 R.' 77.trdcdin refs. 141 ), we believe that the same ex. 1111 W 1 Cdrter and I .
1A 'ii. I I %,it 67 (1977)

pression will follow, in the asymptotic limnit of large 785.
wave number, from sonmc of the other (non-equivalent) 1121 1 ' Wulf. I ONt S- 1Q 14 1
deftinitions of generalized radiance funct ions, when [131 (.I. ltouwkanip, Rep. Piog, PhN% .1 ..ndon: JIIm p'Os s-
they are specialized to fields generated1 by quasi-horno. (-at St'.nieiy 117 t(191541 35
geneous Sources 1141 1 ord Ra) engh. T'he tI ik l1 of vwunl orv,'rmrted hr t)cvur.

amwtu'pute i Ill iii. i.e 1,.I i.,ten e , xpi i2iri uscd in

Acknowledgement II51 1: W. N1141,11 aii. 1 %%11 I I,[ Soc. Am. 64 (1974 1
1273;

We s" ish toack now ledpe sinnu Ia i g discussions A Wal.,.. 1 01), k... 64 (1974) 127S
withPro . W , W ltod, IK.S an wih Pof.(I~ I' M 11,(1 ii . . I W. I) i" . U (ii. ii of ptics (Perga rion
withPro. W. Wllod .I .< S an wih Pof.PtI'sh.. .1 kild 1N. A Yliril, 6th et 1980), Appendix

R. Wur tton about (fhe so lte,&( rntet of this note. III
[1 71 C W..(t, t~plje: I -. ,i) )h o,. 2.14).
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Radiance functions that depend nonlinearly on the
cross-spectral density

John T. Foley* and M. Nieto-Vesperinast

I). '(it ri'rt o I'~'st it ttt ,'Xtrvltttiv. I ttesity of Ito( hteslir, )tI foc o.tiiti Nvit, Yorh 1-116-17

R'::,ivr!d Mai'ld 4l it;raclulMa ti. 1415

Revent l\ a row dr Iiiti ii of radianrce wits proptosed I.I. Opt. Soc. Am. A 1, 556 ( 1984)) ithat depends non linearly (-n
he cross- spectral tierity of the tieldf id saisfies, the three major postulates of traditional radiornetry. We show

that there are all infillrte numbear of such radianoce funcions. Their utility is discussed.

*It is well knowni that one of the Main pruoblemis encountered Wrrih(I Wi=X()f.r,0 2
in the attempt to connect the theory tif'partial coherence with fl, sr, ~ i'dr ,()~~r.i) 2
tradiuional radiomei rv' :t is that there is no radiance function Th iefntosaerhnrmlvrtedminD
that depends linearly onl the cross-spectral density of the field Teegnurlosaeotoomloe h oanD
and( satisfies the three majior postulates of' traditional radi- i.e.,
ometryN for planar sources ofa atly state of coherence .4 .

5 More0,., d2rC
specifically, consider a planar source of finite area 1D located f
in the plane _-= 0 that emits light into the half-space z > 0. and the eigenvalues are real and non negative. Expansion (It
Let r be a two -dimensional position vector in the pilane z =- od repcieo hte testofntosI r !i

% 0~~~t, Wt Fi. r2 , 0' he the cross-spectral dtensity in that plane, ftnd cmlt nteHletsaeo ucin htaesurs bre a three-dimensional unit vecitor whose z compionent is comprale invte I-ibetspc o uctosht r sur
nonnegatrive. Friberg" showed that there is no rad~iance ingrheor
lu function Mi r, s, ol that satisfies the follo w intg fotir c-ondlito' In Ref'. 7 the following definition of radiance was pro-
for planar sotirces of any state of coherenice: psd

BI hr. s, 0l depends linearly on M r-., ~ hr ~" ~~rs~ J x~k Gr, 0, 27dr
t11)liifr, s, 0t 1) for aill r and s,(4

(111) Mrs tl, 0tr a, hetdr , 1),) where (;(r', r, 0', the generating function, was given bly

where cos 1) = a i and .Jts. i') is the radiant intensity of r'ra) x() .vX,1)~r'a4,*r i (5
physic-al opt ics. For example, Walther's two definitions' .2 filI and
to sa tisfy reqt Iiireinaent (11) for certaini types of sources.:"'

In an Interesting recent paper 7a new del mit ion of radiance r 1
was int rorducedi that t) depen rds nonIi nearly oft 1,1 (rj r.,, 0l o, r 4 1)

and hIsatsfis rquiemets ll) (IV) for sources of any state Equtation GO) fo4rces Ut r, s, i,) to tc to tinega Ii y: t he refore
if ci here nce. T1 he pfirpo st oft his Co*rirnm uni-at ioi ,tis to Show contdit io n (II) is fulfilledt. Si ne
that till radiance futit (iti Ref 7 is, iht t1i(Ijrie in) thbese re'-
spiects. Bly using the niettirss rief. 7 we will show that there GIr', r, 1t 0). r .* 1), 17t

cond it oits I it)tnfI ty.rttit' ~ ~~il-l yrstgEs .( and 11, 1it~e

T'he t ross siet Iral len-,il vt tit, tri-o-tn hi- reftresenil f- Is strighttiirworr) itter Ito show ftit
(iv th-e ,srcer i'xitfitiiti<

Wir, r i , \, i, (r 1,1 -i. m. I r and it foillow, friton Eq-s. 1-4t and (8) that cioditioit (IV) is
Ititlil~ld1, Ise Be. 7 tor tietailsI.

where, thei ec I r, io i .i -.- i ; tI th i'1e- We will iiw\& Aotw th(at tfor a ,i-eti croiss slte(-rtl densit\
* ~fujnctions mid fill~,,tdi th, l-ri-illittt initiria )tti-citt there are aitiiitt itnurrf erriigtitti

eqtial fioit i r., r. It htitl rdt .ol~c i'q, 1 Mt w I. Ilur cwrittiptndinz r~t

a 87

onSe.f-rr

%w %l ~{L



I.l',At'iiiiiniim, ati.,n \aL. 2, No 9/St'ptemiiir 1985'l. p Soc. Amn. A I44

iia I i-e*1 ticI Ions4 oblt; In11ed 6%iv ain,, Eq. (411 w ill t It, 'c(,'ttrnt di certaini ivpc' of silrces Wsalthe's riidiaii't fond jils oheNt
Ited ti) it ierlx (,tilV I r., itl. .hv voiiiit it) n I I h IY) aplroximtiii , I' hit 'qitioii ot* ra~dial~ i' ttIirstlr when theNy
inld in general. Ia iltertit I ront tat raidiani,' tunki ion ot liet. propaigiite 1into t he half space, > 0.1 Since Wirl r I,)

propaiga tes into the hialt -space, 4 > )cco rd ing to two linear
Co nside r the expansion piartial ditferential u'jotio ifs i the He(lmholiltz' equat ions oni the

vairiablles r, andl r,, rt'sjtctivevN, the( noinliriear radliance'
G ir" 1 = 19 1(r) (I , r,,i.', ,I' i,(r, 1,), 09) funlct ions maY, niot propalgate itIi t his sIIi Ille manner. Ne% er

theless, the nonlinewa r radiance fu nctions are- interesting and
where' deserve further study.a
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a v~q,, *~ '~ *~4 i' (r I r I,) H1) On)t leave taron lietparim('ni ofli 11551(. kissip i iiak

I niversity, Nlississijl State. Miss. 3(9762.
Fiiit ion If1) can he rewritten its t Onl leavt' from 1:1A itii!'i (it- Opt ito. ('onsjio Superir ]

Wr , ir r,1). (1) Invest igacit nes ( ienlit i. .,. rano 1 I21, 28 (94i NI ai rid. Spiiiii
(Vt1 r2 il " ~j A(4'5,,, ,, t ~1 , '4~, I., 'V (21 Also at the Instio t of( Opi 'i-,ersitY oft lRiitluster.

Iolows frini Eqs. (It, 112). andi( C:4 that the generating
!w-4 wil d'tina( liV Eq. ill) ohev's Eq. (8) ifid oilinly if' tht' REFERENCES

0 , ( 'i ,1 e \ (13) 2. A. Walther. ''(Idiiano'trY anicliiirti Ii-. " 4 p1 '- Ami 6:,2
16(22 16I'230973~T).

stati' (1,wtets 3. heene U)It ic n41, (4(2'-h

~.l'-ii~gfu~t~ais of th.'fiirmni 49 and (ih.- oiefficients 4. E.Wif 'oeec ii aiiitt~'1ttStAi', fixs. I-

th-, , r. s-' -pr- truci dl',ilt\ In thi' .',iurl c jotimf arnd >ali.,ft' 5, A. 'I. Friherg. ''On the existen-e of a radiance utiit fhr Iiiiii,

(11 Mi. l ~ ') T Ihe radilance funct iton ot Re-f. 7co r - planar atoures oif arhit rarv states it -I if it're'nce,' - ( Opt S,.(- Al-\
rf ondsIli lit I. oice69. 192 198 1979).

rt~'(li'ililStti I e (hll('(' 6 E. W. M archand and V. W'(i, "%''alt her's diclufii ni At geiii.ri

tel A,,4,')'l~0~ 14) i-ied radiance," J. Opt. Soc. Am-. 64, 1272t t27 u) t41
W . M1artinez -Herrero and 1P. Mejias. "Hadiiiiiitiric illit S i, *III

%!vafr sinipldt' chil,- woiih hte pamtolly cithertnt smiir'es'' JI. tlpt. Sm. Ain A 1. 55.% 7'
10984).

it 1, 1i . (I i x es t 1ii. ii, 1. (15) K IS, M ilt,'' Ni-w thuory il part itl oit'r' ii Ii he' spae I rop4 in

,I rt - i I t is rteal. mirets." .1. Opt So( Am 72, :i 1 .5 (i IS28 ).
I'lit' a uit rciilt firinlgs it) ind twit ittiestitins. First, of' lI.tw'vt'r it %has ret -i'itiv htolwn Ijil lii I Jlti il(-riaw I i- .- '-I

!I t fm 'g. iio hevo hrmiaii 'tt o ns. that islh r't' hellr oi' the re s,,mi iiaw- ml' (. qWiitt 4iI'i ii

reow th l,*miia oe IIR0 - Itht s reero coiterent-nmote ttgniiilosit Sthell model' -u.i~~ ti iI
iid, I ki's.' oili 5' ;m ithha i i-mia p sial restrictittasotn It'll. 9,3- :17(91(9h-l)

iril!it mi. liii- iniwil Ii, thius quest ion Is clt';iy no. lit Inewilit (till ,nsires ilm! t'x()amsi (:I' -is't illilii W-.l

Si, ,vd airt- I hi-. nionllinear raia~nct' tunuI. lions jirtterdult Set' F Hit'sz aint Bt S. Ntigv, Funi, iii Amiiuissi s ingar. N,'~s
0- ,, tt-hnt ins lte" [hi aii pnqeto York, (9.55). Sec 82 Vh-hrixaluf ' er'l'sii

tif Walthii Ihis ~ ~pt'tl t~iestiitn ible (dr', r, 1, -iit dc-penct ' iiht'rtiit ;ti (it Iiltol .'. r
II t it tm ,' I'l h i iiing pinits tire rele'valnt. Each 0'1 is c'tiplete.

,tWil ier'- riiici-'tin t~m lion, is, linlga'tice wheil the( I I WI. 11 ('artir and E. Woit. '4,tiertiic and rali-m- r% %kill,
-! I (I P, 1>1~l honntloteIa-I I I Sitt- (Itasi ht nltgenet'is qualisi hiionnigti'tis planar milurcet," ''1 Opt Sit Am it7, - 11.

-In,,ir,' giitly I vspait l m1( it ri, lNaltht'-r's radiancet' 1!077 .

M), 111 11, heha% vfir, il~krl% 1, Irt hi- t q.uFrioftitirces ''On -helie 12iAiT.rtiberg, " n the gpn riiiie Ctassm - isi Iiat'd - it111 ri

i-q lkii h I rtt 1iom ial ruth tautr', \I'- ilivt'lu ed . Alsti. (ior ((8
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